
Robust Efficient Distributed RSA-Key Generation

Yair Frankel
�

Philip D. MacKenzie
�

Moti Yung
�

�����	��
�����

We solve a central open problem in distributed cryptography, that
of robust efficient distributed generation of RSA keys. An efficient
protocol is one which is independent of the primality test “circuit
size”, while a robust protocol allows correct completion even in the
presence of a minority of arbitrarily misbehaving malicious par-
ties. Our protocol is shown to be secure against any minority of
malicious parties (which is optimal). The above problem was men-
tioned in various works in the last decade and most recently by
Boneh and Franklin [BF97].

The solution is a crucial step in establishing sensitive distributed
cryptographic function sharing services (certification authorities,
signature schemes with distributed trust, and key escrow authori-
ties), as well as other applications besides RSA (namely: composite
ElGamal, identification schemes, simultaneous bit exchange, etc.).
Of special interest is the fact that the solution can be combined with
recent proactive function sharing techniques to establish the first
efficient, optimal-resilience, robust and proactively-secure RSA-
based distributed trust services where the key is never entrusted
to a single entity (i.e., distributed trust totally “from scratch”).

Our solution involves new efficient “robustness assurance tech-
niques” which guarantee “correct computations” by mutually dis-
trusting parties with malicious minority. These distributed-value
representation and manipulation techniques are of independent in-
terest.

����� ��
������������ � �

The notion of distributed cryptographic protocols has been cen-
tral in cryptography for over 15 years. Some protocols have been
designed to solve communication problems which are impossible
from an information-theoretic perspective, like the coin-flipping
protocol [B82] and the millionaire-problem protocol [Y82]. Other
protocols have been designed to solve generic problems. These
protocols (called “general compiler protocols”) can securely com-
pute any public function on secure inputs. The first such protocols

�
CertCo, frankely@certco.com�
Boise State University, Boise, ID, philmac@cs.idbsu.edu. Initial work

in this area was performed at Sandia National Laboratories under U.S. De-
partment of Energy contract number DE-AC04-94AL85000.

CertCo, N.Y., NY, moti@certco.com, moti@cs.columbia.edu.

were developed by Yao [Y86] and Goldreich, Micali and Wigder-
son [GMW], and various developments were made in subsequent
works, e.g. [GHY, K, BGW, CCD].

Recently there has been a thrust to construct more efficient pro-
tocols for specific problems, and in particular, problems involving
the distributed application of cryptographic functions (surveyed in
[Gw97]). These efficient (proactive) function sharing protocols are
needed to provide increased memory security, distributed trust, and
flexible management (i.e., adding and deleting trustees) of crucial
functions like certification authorities and consortium signatures.

A major efficiency difference between a general compiler pro-
tocol (which should be thought of as a plausibility result–see [Gr97])
and a function sharing protocol is due to the fact that the commu-
nication complexity of the former depends linearly on the actual
size of the circuit computing the cryptographic functions, while
the communication complexity of the latter is independent of the
circuit size (and is typically a polynomial in the input/output size
and the number of participants). This difference (pointed out first
in [FY93, DDFY94]) is crucial to practitioners who require effi-
cient protocols. A function sharing protocol involves a protocol
for applying the function (based on distributed shares), and some-
times (in what is called a “proactive model”) also a protocol for
re-randomizing the function shares.

Another important step regarding “distributed cryptographic func-
tions” is the (efficient) distributed generation of the function (the
key shares). For cryptographic functions based on modular ex-
ponentiation over a field (whose inverse is the discrete logarithm
which is assumed to be a one-way function), a protocol for the dis-
tributed generation of keys was known for quite a while [P2]. How-
ever, for the RSA function, which requires the generation of a prod-
uct of two primes and an inverse of a public exponent, this step was
an open problem for many years. Note that Yao’s central motiva-
tion [Y86] in introducing general compiler protocols that “compute
circuits securely in communication” was the issue of distributed
generation of RSA keys. Indeed the results of [Y86, GMW] show
the plausibility of this task.

A major step forward was recently achieved by Boneh and Franklin
[BF97] who showed how a set of participants can actually gener-
ate an RSA function efficiently, thus detouring the inefficient com-
piler. They developed many important new protocol techniques,
and showed that their protocol was secure in the limited model of
“trusted but curious” parties. They left open the issue of robustness,
i.e., generation in the presence of misbehaving (malicious) parties.!

In this work we solve the open problem of robust, efficient and
!
Note that assuming adversaries misbehave arbitrarily, the Boneh-

Franklin protocol may be prevented from ever generating a shared RSA
key. Note also that more generally, robustness has motivated basic notions
in cryptography such as verifiable secret sharing [CGMA] and general zero-
knowledge proofs [GMR].

secure generation of shared RSA keys (or more generally, keys
based on multiplying two large primes and exponentiation). Our
solution assumes � �������	� , where at most

�
parties misbe-

have in any malicious and arbitrary way; i.e., we achieve opti-
mal resilience, since a majority of good participants is required.
If � ��
����� we have a slightly more efficient variant of the
protocol. The techniques we present solve numerous other prob-
lems, since they can be employed to distributively initiate schemes
based on composite numbers, such as: composite ElGamal encryp-
tion/signature, identification schemes where no participant is al-
lowed to know the factorization of � (as in Feige, Fiat, Shamir
[FFS]), and an efficient version of Yao’s simultaneous bit exchange
protocol [Y86].

The solution is built upon the following techniques:

� Multiplication protocols for shared “sum-of-poly” represen-
tations of values drawn from (1) a prime field (with robust-
ness and security based solely on the hardness of the dis-
crete logarithm problem), or (2) a subset of the integers (with
robustness and security based solely on the hardness of the
RSA problem, but without requiring a shared RSA modu-
lus). The technique has potential in other applications since
it is information-theoretically secure but also produces pub-
licly verifiable witnesses which are held by the “community
of servers”.

� Techniques for “chained-consistency” of shared information
and its associated checking information, i.e., forcing check-
ing information to be consistent over various computational
tasks (e.g., generation protocols, multiplication protocols, and
double primality tests) even when the representation of that
checking information changes. This involves

– the idea of “cross-checking” information, i.e., main-
taining consistency by verifying share information through
checking information, and moreover, verifying new check-
ing information (perhaps a different representation) through
share information. This duality of “checking and com-
puting” is promising and is perhaps of independent in-
terest;

– efficient zero-knowledge arguments which verify that
checking information is consistent; and

– a bootstrap technique assuring global checking by us-
ing a multitude of checking information w.r.t. individ-
ual keys.

� A commitment mechanism, called Simulator-Equivocal Com-
mitments, which are as secure and efficient as normal com-
mitments, but allow for certain simulatability arguments on
committed data which could not be accomplished with stan-
dard commitments. The mechanism leads to a new proof
technique of security for result-producing protocols.

The resulting protocol assures that distributed systems employ-
ing the RSA function (and the other functions mentioned above)
can be initiated distributively as well. The protocol is relatively
efficient (it does not depend on the size of the circuit of primal-
ity tests as in the general compilers). In addition, the number of
rounds can be made about the same the number of rounds in the
non-robust protocol, and the computation complexity (measured in
the number of modular exponentiations) can be brought to about
100 times the computational complexity of the non-robust protocol,
given reasonable values for the number of shareholders and secu-
rity requirements, and a few modifications for efficiency discussed
in Section 16.

These results show that our protocol is a feasible protocol that
can be used in system initiation and key replacement in numerous

systems (as mentioned above) and in various settings which require
distributed trust. Note, for example, that shared public key replace-
ment in a certification authority may be performed every three or
five years, and thus need not be “real time” operation. Therefore,
a somewhat long (say, two-three week) protocol is reasonable. On
the other hand a “general compiler” protocol which will take more
than the five year period itself is unreasonable!

Remark: The techniques developed here can be used to con-
struct a robust threshold DSS as in [GJKR], but with optimal re-
silience and with no additional cryptographic assumptions.

�������� � � ���
The Network: We use the a model similar to various recent works
and also [BF97]. We assume a group of � (probabilistic) servers,
all connected to a common broadcast medium � , called the com-
munication channel. We assume that messages sent on � instantly
reach every party connected to it. The system is synchronized (and
w.l.o.g. that servers act synchronously).
The Adversary: The adversary is computationally bounded (i.e.,
it can not break the underlying cryptographic primitives) and it can
corrupt servers at any moment by viewing the memories of cor-
rupted servers and/or modifying their behavior. The adversary de-
cides on whom to corrupt at the start of the protocol. We assume
that the adversary corrupts no more than

�
out of � servers through-

out the protocol, where � ��������� . (or � ��
���� � for the more
efficient protocol variant.) Our model does not differentiate mali-
cious faults from “normal” server failures (e.g., crashes). We also
assume that the adversary is connected to the broadcast channel � ,
which means he can hear all the messages and inject his own. He
cannot, however, modify messages sent to � by a server that he
does not control, nor can he prevent a non-corrupted server from
receiving a message sent on � .

In fact we can strengthen the adversary in the spirit of a more
mobile adversary [OY91], where we assume the protocol proceeds
in “trials” each trial independent of the past. During a trial a proper
key can be generated or the remaining servers (which were not
caught deviating from the protocol) restart a new trial. Provided
that the eliminated misbehaving servers till now are

�"!
, we allow

the adversary to occupy
�$#%�&#'� !

new servers at the start of the
new trial.
Notation: Let (be the security parameter, and let)+* ��, . Say � �
is the product of two unknown primes, each in the range - .)0/ � .)21 ,
and 3 � and (� are generators whose discrete log 465879� � with re-
spect to each other is unknown. Indeed finding such an � � may be
difficult since that is the whole subject of this paper! In this case,
each server :<; , can choose a triple =>�?;8/@3�;�/A(B;DC and broadcast it;
we, in turn, can bootstrap a solution based on these local values.

E F � � � � �<� � ��� � G�� � �
We assume familiarity with secret sharing [Sh], verifiable secret
sharing [F], unconditionally secure verifiable secret sharing [P91],
basic commitments using discrete logs over prime groups [P91],
basic proofs of knowledge of discrete logs [GHY85, CEG, CEGP],
and how a number of parties can generate a random value by all
committing to private random values, and then revealing those val-
ues.

We also use the recent “share representation transformation”
techniques from [FGMYa]. Specifically, we employ the following
two methods:

� A “poly-to-sum” technique which transforms a function shared
by a
�

degree polynomial amongst � servers into a
�
-out-of-

�
additive (sum) sharing.

� A “sum-to-poly” technique which transforms a function shared
additively

�
-out-of-

�
into a

�
-out-of- � polynomial sharing.

��� ����� ���	��
 � � � � � � ���� � � � � ��� � � ��� �
 ��

 ��� ��� � ��� �
We now discuss the new techniques which provide for secure and
robust RSA key generation. We first develop a multiplication pro-
tocol over a prime field which we later modify to work over the
integers. The protocol uses a sum-of-poly representation of values.
We note that related protocols (over prime fields only) are described
in [GJKR], however, as opposed to those protocols, our protocol is
unconditionally secure, and is based on the difficulty of discrete
logs with no additional assumptions.

We use semantically-secure public-key encryption for sending
private messages between servers. We develop a protocol in which
severs (shareholders) : ! /������ / :�� (for � � ��� � �) can perform
robust multiplication over a prime field while maintaining uncon-
ditional security. The goal of the protocol is to compute ���=�� ! � ��� � ����� � ��� C =�� ! � ��� � ����� � ��� C�46587! ! where��" and ��" are chosen by :#" .
�%$ � ��8� �
����	��� � �

1. Set up: Let �* � !�� � be a strong prime, and let 3 and (
be generators of & �' (such that the discrete log of (over base3 is unknown). Server : " determines � " /(� "*) & '#+ , and per-
forms a Shamir secret sharing of those values with random
polynomials , " =	- C */.10243#5 , "	6 2 - 2 46587� ! and 7 " =	-BC *.102�3�5 7�"	6 2 - 2 46587! ! , where ,�"A=�8DC&*9��" and 74"A=�8DC&*9��" .
(If during the protocol any shareholder ::" is determined to be
corrupt, we assume that � " *;� " *;8 and that throughout
the protocol shares for � " and � " are equal to zero.)

2. Pedersen Sharing of � " and � " .
While Pedersen used his sharing scheme for implementing a
verifiable secret sharing, we use the sharing as a base for effi-
cient and robust secure multiplication. We assume the inputs
to the multiplication protocol were generated as follows:

(a) Each server : " generates two companion secrets � ! " /(� !")=<& '�+ and shares them with Shamir secret sharing using
random polynomials , ! " =	-BC *>. 0243#5 , ! "	6 2 - 2 46587! !
and 7 ! " =	- C *?. 0243#5 7 ! "�6 2 - 2 46587@ ! , where , ! " =�8�C *A� ! "
and 7 ! " =�8�C *A� !" . It also publishes the Pedersen verifica-
tion shares for each pair =	,B" =	- C /C, ! " =	- C C and =	74" =	- C /D7 ! " =	- C C :E "	6 2 � 3�F�G	H I�(F +G	H I 46587! and J "	6 2 � 3�KLG	H I�(K +G	H I 46587 . Each server : ; verifies its shares with the verifica-
tion shares.

(b) Define� �A�A� ! � ��� � ����� � ��� 46587@ ! ,� � ! �A� ! ! � � ! � � ���4� � � ! � 46587@ ! , and� �M�N� ! � � � � ����� � � � 46587@ ! .� , =	- CO�?. �" 3 ! , " =	- C�46587@ ! , and, ! =	- CP�Q. �" 3 ! , ! " =	- C 46587@ ! .
Observe that the zeroth coefficients of these polynomi-
als are � and � ! , respectively. Also note that the verifi-
cation shares for pair =	, =	- C /C, ! =	- C C can be computed by

all shareholders as follows: E 2 �?R �" 3#5 3 F�G	H I (F +G�H I 46587 .

3. Generation of randomizing polynomials: :�" generates ran-
dom polynomials S " =	-BC*�?. � 0243 ! S "	6 2 - 2 46587! ! and S !" =	- CP�

. � 0243 ! S !"	6 2 - 2 46587� ! , distributes shares of these polynomi-

als, and broadcasts verification shares T "	6 2 * 3�U G�H I (U +G�H I for�QVXW1V ���
. (Note that SY" =�8�C *ZS !" =�8DC0*Z8 , and thatT "�6 5 * � , for
�[V]\�V � .) Each server

W
verifies its shares

with the verification shares.

Each :#" also generates a random polynomial^ " =	-BCO� . � 0243#5 ^ "	6 2 - 2 46587! ! , and distributes shares of this
polynomial.

4. Generate and verify shares of randomized � =	- CC��" =	- C and�?=	- CC� !" =	- C : Let _ " =	- C`�a, =	- CD7 " =	- C � S " =	- C and _ !" =	- C`�, ! =	- CD74""=	- C � S !" =	- C � ^ " =	- C . (Note that all shareholders can
compute their shares of _ " =	- C and _ !" =	- C using previously re-
ceived shares.) : " broadcasts verification shares for the poly-
nomial pair =	_b"A=	- C /C_ !" =	-BC C :

c "	6 2 *edfhg�i 3B2 = E f C KjG�H k T "	6 2 (ml G	H I
On a disputes as to the correct _ " = W C values, : 2 challenges : "
to reveal the shares 7�" = W C and ^ " = W C . All shareholders can de-
termine if 7 " = W C fits the verification shares for 7 " =	- C , and they
can check if the the share _b" = W C fits the verification shares for_ " =	- C by computing = 3�Fbn 2�o (pF + n 2�o CCKjGqn 24o = 3 U GDn 2�o (U +G n 2�o C"(l GCn 2�o 46587 , where 3 Fbn 2�o (F + n 2�o 46587! can be computed from the E
verification shares for =	, =	- C /D, ! =	- C C , and 3BU GDn 24o (pU +G n 2�o 46587 can be computed from the T verification shares for =�S " =	- C /CS !" =	-BC C .

5. Prove correctness of verification shares (only necessary
for
��� � �NV � V�
��): For

�?Vr\�V � , :#" proves to
all others that for

�MVrW;V � , it knows representations
of 3 KjGDn 24o (K +G n 2�o 46587@ and = 3 Fbn 2�o (F + n 2�o C KLGCn 2�o (l G(n 2�o 46587@ ,
where the discrete logs of 3 in the first and 3 Fbn 2�o (F + n 2�o 46587 in the second are the same.

6. Output: Let _B=	- C��s. �" 3 ! _ " =	- C�46587� ! and _ ! =	- Ct�. �" 3 ! _ !" =	- C�46587� ! . Each : ; reveals _B=�u C and _ ! =�u C and
interpolates the resulting values to get _B=�8DC . (Observe _B=�8�C*��v�1� � 46587! ! .) Note that the verification shares for the
polynomials _B=	- C and _ ! =	- C can be computed from the ver-
ification shares from the previous step. All revealed shares
are verified using the verification shares.

w F � � � � �<� � ��� � G�� � � ��� �
 ���� ��� � �bx8�
�
Secret Sharing over the Integers[FGMYa] This is a variant of
Shamir secret sharing [Sh]. Let y * �Oz . For sharing a secret{) - 88/}| 1 , a random polynomial , =	- C?* . 0243#5 , 2 - 2 is chosen

such that , 5 *Ny � { , and each other , 2)=<�~ 8 /}y / � y /������ /(y���| � 1 ,
Each shareholder

\)�~ � /������ / �=� receives a secret share { " *�, = \ C .
Any set � of cardinality

� � �
can compute { using Lagrange inter-

polation.
Pedersen Unconditionally Secure VSS over the Integers.

This is a variant of Pedersen Unconditionally Secure VSS [P91].
Assume (be the security parameter, and let) * � , . Say � � is
the product of two unknown primes, each in the range - .)0/ � .) 1 ,
and 3 � and (� are generators whose discrete log 465879� � with re-
spect to each other is unknown. Indeed finding such an � � may be
difficult since that is the whole subject of this paper! In this case,
each member : ; , can choose a triple =>�?;8/@3�;�/A(B;�C and broadcast it.

The protocol begins with � � � secret sharings: the first being a
Shamir sharing of the secret over the integers, and the next � being
sharings of companion secrets using a variant of Shamir sharing

over the integers. Specifically, for a secret {) - 8 /}| 1 a random
polynomial , =	- C * . 0243#5 , 2 - 2 is chosen such that , 5 * y � { ,
and each other , 2)=< ~ 8 /}y / � y /������ /(y���| � 1 , Then for each triple
=>� ; /@3�;�/A(B;DC , a random polynomial , ! ; =	- C *?. 0243#5 , !2 6 ; - 2 is cho-

sen with each , !2 6 ;) < - 8�� � y � | � 1 . Then shares of each polynomial
are sent to each shareholder (� ��� total shares to each shareholder)

and the verification shares ~ 3 F4I; (F +IDH �; 46587?�?; � 5���2�� 0 6 ! � ; � � , are
published. Note that each shareholder :<; can verify its shares, =�u C and , ! ; + =�u C using the verification shares over � ; + (for all�`V u !=V �).

� � ����� ���	��
 � � � � � � ���� � � � � ��� � ��� � �
 ���� ��� � �hx �
�
Here we develop a multiplication protocol over the integers. The
protocol uses a sum-of-poly representation of values. The protocol
is unconditionally secure, but only in the statistical sense.

We use semantically-secure public-key encryption for sending
private messages between servers. This protocol allows servers
(shareholders) : ! /����4� / :#� (for � � ��� � �) to perform robust mul-
tiplication over the integers while maintaining unconditional secu-
rity. The goal of the protocol is to compute �N� =�� ! � � � � ����� ���� C =�� ! � ��� � ����� � �v� C 46587@ ! where � " and � " are chosen
by :#" from the range - !� .) / .) 1 . (The adversary may choose
values from outside this range.)

The protocol is the same as that of the previous section except
that the share computation is performed over the integers rather
than 46587 ! , the verification and check share computations are
performed 46587 � � rather than 46587@ , and with the following spe-
cific changes:

� Step 1: For each
\
, the zeroth coefficients of ,B"A=	-BC and 74" =	-BC

will be y � � " and y � � " , respectively.

� Step 2b: The zeroth coefficients of , =	- C will be y � � instead
of � .

� Step 3: The coefficients of S " =	-BC and S !" =	-BC will be drawn
as follows: S "�6 2) < - 88/(y ! !) � 1 and S !"	6 2) < - 8 /(y ! !)�� 1 .
The coefficients of ^ " =	-BC will be drawn as follows: ^ "	6 2)=<- 8 /}y ! !) � 1 .
� Step 6: Finally, _B=�8�C will be y	����� instead of ��� , so we

also divide by y � .

e� � � � � � �	�
����9G���� � � � � �� �p� � � ��� ��� �	�
We next show Simulator-Equivocal Commitments. Other robust-
ness tools are given in Section 12.

We show a party B can commit to a value for A, such that the
commitment is binding, but a simulator could produce a commit-
ment that is non-binding. The earliest use of a similar mechanism
that we are aware of (although it is a less efficient one) is in [IY87].
Simulator-Equivocal commitments are basically trapdoor commit-
ments [FS89] combined with a proof of knowledge of the trapdoor.

We use the following setup protocol, which only needs to be
run once for any number of commitments:

1. A strong prime and a generator 3 for & �' are distributively
chosen.

2. A chooses a value 3 !) & �' to be used for B’s commitments
to A, transmits 3 ! to B and proves to B that it knows the
discrete of 3 ! base 3 . (This can be done using the Basic Proof
of Knowledge of Discrete Logs.)

A commitment is constructed just as in the Basic Commitment
protocol, except that 3 and 3 ! are used. That is, B commits to a
value -) & ' + by choosing - !) < & ' + and publishing ������� \ � *
3���3 ! � + 46587� .

When B wishes to open the commitment, B reveals - and - ! ,
and A may check if ������� \ � � 3 � 3 ! � + 46587! .

Theorem 1 The Simulator-Equivocal commitment protocol is a com-
mitment protocol which, moreover, can be simulated by a polyno-
mial time simulator

Proof: Equivocalness: To be able to open up a commitment to
any value, the simulator uses backtracking in the proof of knowl-
edge of a discrete log , of 3 ! in the setup to obtain the actual
discrete log. (In the setup, the simulator can be thought of as an
extractor [BCLL].) After the simulator has committed to - with
3 � 3 ! � + 46587� , if it wishes to open the commitment as S , it revealsS and - ! � = =	- # S�C��Y, C�46587! ! .

Binding: If B is able to open its commitment two different
ways, then it would know the discrete log of 3 ! base 3 , and that
probability is negligible. �
� � ����������� � �	��
 � ��� � � ��� ����� � � ��

 � � � � � � � �<� �	�
We use the double-prime test scheme of Boneh-Franklin but we
make it robust and “chain” the robustness tools to the preceding
generation of the value � . To get robustness, for each

\
we use

the polynomials " =	- C * ,�" =	- C � 7�"A=	- C * . 02�3�5 "�6 2 - 2 . where, " =	- C and 7 " =	- C were used to distribute ! " and " " , respectively, in
the Distributed Computation of � , and we use the corresponding
check shares used in the Pedersen sharings. Call these check shares# "	6 2 for 8 V W!V'� , with # "	6 5 * 3%$�& n ' G g)(G o� (' +G g)(+G� 46587 � � , where! ! " and " !" are the companion secrets to !#" and "�" respectively.

The following steps are repeated (times to get the desired se-
curity level:

1. The shareholders randomly choose 3 (technique mentioned
in Section 3), such that *,+�.- * � .

2. : ! broadcasts / ! * 3 n10 g !�2 '�G 2 (G o43 �$46587 � . Then it proves
knowledge of the discrete log of / " and a corresponding
representation of 3 $ & 0 g !� # 2 !! 6 5 (over 3 � $ &� and (�) using the
protocol in Section 12.1. For each

\65 �
, :�" broadcasts/ " * 3%n '�G g)(G o73 � 46587?� . Then it proves knowledge of the

discrete log of / " and a corresponding representation of # "�6 5
(over 3 � $�&� and (�) using the protocol in Section 12.1.

3. Now all shareholders verify that / ! �*R �" 3 � / " �98 � 46587� . If it is not equivalent, they declare that � is not a product
of two primes.

: � ���������<; �����
�� ��� � � � �v
 ��� � � � � � ��

 � � � � �>= �b� �
Remember that ? =>� C�* � # . �" 3 ! =@! " � " " C ��� . As in Boneh
and Franklin, we give two procedures, a simple one for small public
keys and a more complicated one for general public keys.

What is interesting in our procedure is that certain operations
can be easily done (while maintaining checking information to as-
sure robustness) if a change of representation of the shared value is
first performed. The recent sharing representation changes “sum-
to-poly” and “poly-to-sum” [FGMYa] will be employed.

: $ � �#� � � �
 ��� � � � = �b� �
We will assume ��*
 ; the procedure for other small public keys is
similar.

1. Shareholders jointly choose 3)=< - � / � # � 1 using Simulator-
Equivocal Commitments.

2. For each
\
, :�" broadcasts 3 '�G g)(G 46587 � .

3. Each shareholder checks that value against / �" 46587 � (Ac-
tually : ! checks it against 3 0 g ! ��/ l ! 46587 � .

4. For each
\
, : " reveals - " *�! " � " " 46587
 .

5. :#" proves knowledge of the discrete log of 3 '�G g)(G 3 2 � G 46587� with base 3�� .
6. Note that ? =>� C � � � � # . �" 3 ! - " 46587
 . Let ^ *
� � � # . �" 3 ! - " , and ^ ! * � � �'
 # � . �" 3 ! - " .
Similar to Boneh and Franklin, if ? =>� Ct� � 46587
 , : !
computes its share of

�
as
� ! * l 2 n '�� g)(� 2 � � o� , and for��V \�V � , : " computes its share of

�
as
� " * 2 n '�G g)(G 2 � G o� .

If ? =>� C � � 46587
 , : ! computes its share of
�

as
� ! *l + 2 � n '�� g)(� 2 � � o� , and for

��VQ\�V � , : " computes its share

of
�

as
� "�* 2 � n '�G g)(G 2 � G o� .

All shareholders broadcast check shares 3�� G 46587 � .

7. All shareholders check that the check shares cubed are cor-
rect.

8. A sum-to-poly is performed to construct a = � /@�<C -secure poly-
nomial sharing of

�
.

: $ � � �
 x8�
 ��� � � � = �b� �
For � large, we use the idea from Boneh and Franklin of finding= ? =>� C C 2 ! 46587�� . For now, we assume � is a prime, with 	 *� � � � a (strong) prime. Recall that for

� V \ V � , " =	- C2*,�" =	- C � 7�" =	- C . Let =	- C * y � =>� � � C # . �" 3 ! " =	- C . Then =�8DC *Ay � ? =>� C .
1. Shareholders jointly choose � randomly, and test to see that
� and

� � �%� are prime.

2. Shareholders jointly choose 3�
�/A(�
) < & � .

3. Shareholders jointly choose 3B/A() & �0 using Simulator-
Equivocal Commitments. (Actually ! �������4��3 of them.)

4. : " chooses � "P) < - 8 /) 1 , and performs a Shamir sharing of� " over the integers. Say � * � ! ��������� � � .

5. The multiply protocol is run to calculate ��*Ay	��? =>� C � 46587
� (with all values of the Shamir sharing of each � " taken46587��). Let �8� c *�� 2 ! 46587�� , which is easily calcu-
lated from � .

6. For each
\ / W , each : " multiplies its integer share of � 2 by

�8� c to get integer sharings whose sum contains a secret� � =�y � ? =>� C C 2 ! 46587�� .
7. Perform a multiplication over the integers with check shares

over � to get a polynomial sharing with
y � � ? =>� C ���

in the zero coefficient. (To add one, simply add one to all the
resulting shares.) However, instead of revealing the shares
of the resulting polynomial, reveal those shares only in the
exponent. For example, assuming the resulting polynomial

is _B=	- C and the resulting companion polynomial is _ ! =	- C , in-
stead of : " revealing _B= \ C and _ ! =	- C , it reveals 3 i n " o 46587 �
and (i + n " o 46587 � , and proves that it knows the actual shares
using the protocol from Section 12.1. Note that _B=�8DC �8&46587�� , and _B=�8DC*� � 46587 ? =>� C .

8. The shareholders perform a poly-to-sum to
� �%�

sharehold-
ers.

9. Those
� � �

shareholders divide their additive shares by � , and
publish the remainders. Also they publish the check shares
for the new additive shares. (Everyone should check these
check shares by raising them to the � power and comparing
them to the original additive shares.) The remainders will
sum to a multiple of � . Add this multiple to the additive share
of one of the shareholders. Then these shareholders hold an
additive sharing of

�
.

10. The
� � �

shareholders perform a sum-to-poly to construct a= � / �<C -secure polynomial sharing of
�

.

���

���	��� � �
The protocol:

1. The parties run the setup protocol for the Simulator-Equivocal
Commitments.

2. Re-Starting point
At this point the majority agrees which servers are “honest”
and what is the upper bound on the number of misbehaving
parties (given that some parties have been eliminated).

3. Run the Distributed Computation of �
There are � � ����� � (or � �
���� � for the more efficient
multiplication protocol) shareholders : ! /����4��/ : � . Let y *�Pz . Let (be the security parameter, and let)�* � , . The
goal of the protocol is to compute � * =@! ! � !#� � ����� �! � C = " ! � " � � ����� � " � C , where the ! ’s and " ’s are chosen
randomly by the shareholders.

(a) Each : " chooses ! " / " "*)=< - !� .) / .)21 .
(b) The Shamir scheme over the integers is used to dis-

tribute shares of !%" and "�" . Say the polynomial used
to share ! " is , " =	- C , and the polynomial used to share"�" is 74"A=	-BC .

(c) The multiplication scheme over the integers is run to
compute � * =@! ! � !%� � ����� � !%� C = " ! � " � � �4��� � "�� C .

(d) Each : " proves that ! " and " " are in the range - 88/ � � .)21
using the protocol in Section 12.1 (over 3 $ &� and (�)
with the zero-coefficient verification shares from the
multiplication scheme.

(e) If any party misbehaves, and the majority agrees that
it is misbehaving, it is excluded from the rest of the
protocol.

4. Run the Robust Distributed Double-Primality test of �
If � fails restart the protocol with the current “honest” par-
ties.

5. Run the Robust Distributed Generation of Public and Pri-
vate Keys
Decide whether to use a small or large public exponent and
run the appropriate protocol to determine public and private
keys � and

�
.

� � � ��� � � � �	����� � � � � � � � � ����� �	� ��� ��� � � � � � ���� � � � � ��� � � ��� �
 �

 ��� ��� � ��� �
We omit all proofs in this section due to space considerations.

Definition 2 A = � /"�<C -restricted adversary may corrupt up to
�

out
of � shareholders.

Definition 3 A multiplication protocol � is perfectly (statistically)= � / �<C -simulatable if for any probabilistic polynomial-time = � / �<C -
restricted adversary � , for any possible initial setup : (consisting
of share values , " = W C and 7 " = W C for

� V9\@V � and
� V]W V �

,
and initial polynomials ,�"A=	-BC and 7�" =	- C for

��V \ V �
) and for

any possible product � (that could result from that initial setup),
there is a probabilistic polynomial-time simulator ��� 4��<= :�/ � /��?C
for � = : / � C such that ���
	����� ��� n�� 6 �#6 � o� is perfectly (statistically)

indistinguishable from ���
	��
� n
� 6 � o� .

We only deal with a an adversary that can corrupt up to
�

share-
holders at the start of the protocol (or a start of a trial). We assume
we have secure channels. (The proof for channels with semantically-
secure encryptions uses an additional standard hybrid walking proof.)

Lemma 4 The multiplication protocol is perfectly = � /"� C -simulatable,
assuming that the Shamir polynomials of the non-corrupt share-
holders are chosen randomly as discussed above.

Definition 5 (Robustness of multiplication) Assume that for
�`V\ V � , shareholder : " shares the secrets � " and � " using Shamir

(unverifiable) sharing, and assume the adversary does not know
� such that 3 � (�� 46587@ . A protocol is a = � / �<C -robust multi-
plication protocol if for any probabilistic polynomial-time = � / �<C -
restricted adversary � , with all but negligible probability, within
polynomial-time, the product �1� =�� ! � ��� � � �v� C =�� ! � � ��� ����9C�46587! ! is output.

Lemma 6 The multiplication protocol is = � / �<C -robust.

Lemma 7 The multiplication over the integer protocol is statis-
tically = � / �<C -simulatable, assuming that the Shamir polynomials
chosen have coefficients drawn randomly as discussed above.

Lemma 8 The multiplication protocol over the integers is = � / �<C -
robust.

� � � ��������� ��� ��� � � � � �
Note that in all the proofs of knowledge, we use the commitment
tools chosen in the set up. These tools allow us to perform efficient
constant-round zero-knowledge proofs here. Due to space consid-
erations, we only include the basic proof of knowledge of a discrete
log.

� � $ �

��� � � ��� � ��� � � � x8� � � � ��� � �
 � � � � � x
A zero-knowledge interactive proof in which a prover � proves
knowledge to a verifier of a discrete log (or any isomorphic func-
tion) of ! *+3�� 46587@ was presented in [GHY85]. Below we
demonstrate a similar proof based on a composite modulus, � , and
input !+* 3��&46587 � , where -) - 8�� � & 1 , for some & � � .

1. � commits to a randomly chosen (-bit string " *#" !%$�$ � ��� $�$ " ,
using a Simulator-Equivocal commitment, and also transmits= 3 (� 46587 � /����4� /"3 (�& 46587 � C where "�") <'- 8�� � &�21 .

2. sends a randomly chosen (-bit string " ! *'" ! ! $
$ � ��� $�$ " ! , to
� .

3. � opens its commitment. Let
� *("*)+" ! . For u * � �����A(,

� transmits _�; * � ;Y- � "�; .
4. For u6* � �4���A(, verifies ! � � 3 (�-,� 3 i � 46587 �

Theorem 9 The above protocol is a statistical zero-knowledge in-
teractive proof of knowledge of a discrete log modulo a composite.

Proof: Omitted due to space considerations. �
� E

���	��� � � � ��� � � � ��� � �
Our adversary is assumed to control up to

�
shareholders (chosen

non-adaptively at the start). Thus we assume we know which
�

shareholders the adversary will corrupt. WLOG, assume they are
the first

�
shareholders.

We also use semantically-secure encryption which can be sim-
ulated (using a standard hybrid proof). Thus, we can assume we
have secure channels. We also assume the adversary knows the
first � # � shares. Namely, for each protocol instance the

�
shares

of the corrupt shareholders are chosen, then an result oracle will be
queried, it will generate the other shares at random and will give
the simulator the resulting � and the � # � first shares. (This is
the “minimum knowledge” strategy to simulate “result producing
protocol” [GHY]). We will have to prove that the information en-
ables “simulation” of the view of the “adversary”. In addition we
will prove (see Lemma 13 below) that the information given out
by the oracle does not give more than polynomial “computational
advantage” beyond the knowledge of � itself in the sense of the
zero-knowledge methodology [GMR].

� E $ � � � ����
� ����� � � �B� �� �	� ��� � � � � �
Given ! ! /4����� / !%� 2 ! / " ! /������ / "�� 2 ! /A� , we must simulate the adver-
sary’s view.

The simulation given here is one in which the protocol succeeds
and the value of � is found. Of course, we can easily simulate the
case when the protocol fails.

1. Shareholders : ! through : � 2 ! are given their values .! ! through
.!%� 2 ! and ." ! through ."�� 2 ! . (Note that the adversary knows
all these values.) Let .! � */." � *A8 .

2. All shareholders perform Shamir sharing as in the protocol.

3. The simulation for the multiplication protocol is performed.

4. The proof that the values are in the correct range is faked by
the simulator.

� E $ � � � ����
� ����� � �

 � � � � � � �6�<� ���
For
�`V \�V � # � ,

1. For
�`V \�V �

, the adversary chooses and broadcasts � " and� !" . For
�<� �`V \�V � # � , the simulator chooses a random^ "P) - 88/}y) � 1 , and broadcasts � " *%3 n '�G g)(G o73 �� (ml G� 46587 � �

and � !" * �<� $ &" 46587 � � . The simulator then chooses a
random � � and broadcasts � � and � � $ &� .

2. The proofs are run normally, except for the one for � � , in
which the simulate fakes the proof, using backtracking.

The following simulated steps are repeated (times:

1. The shareholders randomly choose 3 as in the real protocol.

2. For
�`V \�V'�

, : " broadcasts / " . For
� � �`V \PV � #'� , : "

broadcasts / "<* 3%n ' G g)(G o73 � 46587 � . The simulator chooses
a bit 7 randomly, and broadcasts

= # � C K 3 n10 g !�2 .�� � �G � � n ' G g)(G o o43 �
for :�� . The proofs are run as in the real protocol, except for
the the one by : � , in which the simulator fakes the proof.

3. The test for / ! ��R �" 3 � / " � 8 � 46587 � . is performed as
in the real protocol.

� E $ E ; �����
� ��� � � � ��
 ��� � � � � � �t

 � � � � �>= �h� �
� E $ E $ � �#� � � �
 ��� � � � = �b� �
Again we assume � *
 .

1. The simulator generates a random ^) - 8 / � 1 , and using
simulator-equivocal commitments, ensure that the 3 chosen
is actually ^
 46587 � . Thus ^ * 3��46587 � .

2. For each
\�� � , : " broadcasts 3 '�G g (G 46587?� , but :�� broad-

casts 3 0 g ! �*R � 2 !" 3 ! 3 '�G g)(G 46587 �
3. The proof are the same, except that the simulator fakes the

proof by :#� .

4. For each
\�� � , :�" reveals -%" * !%" � "�" 46587
 , but : �

reveals 0, 1 or 2. (The simulation is run for all three.)

5. Again, the proofs are the same except that the simulator fakes
the proof by : � .

6. ? =>� C�46587
 is computed as in the real protocol, and all
shareholders except :�� compute shares of the private key�

. Then all shareholders except : � broadcast their shares
3 � G 46587 � , except : � broadcasts ^ �*R � 2 !" 3 ! 3 � G 46587 � .

7. Finally, the sum-to-poly is simulated.

� E $ E $ � � �
 x8�
 ��� � � � = �b� �
1. � is chosen as in the real protocol.

2. 3
 /A(
v)=< & � are generated as in the real protocol.

3. The simulator chooses ^) < - 8 / �21 , and performs the sim-
ulation (as explained in that section) such that the resulting
generated value is 3 * ^
 46587 � . Then ^ � 3 � 46587 � . (
is chosen as in the real protocol.

4. For all
\)?~ � /��4��� / � #�� � , .� " is generated and shared as

in the real protocol. We assume the adversary knows all of
these. Then the simulator sets .� � *a8 , and shares it as in
the real protocol (46587 �).

5. A random value �) &
 is chosen by the simulator to be
the product (y � ��? =>� C 46587��), and the simulation for the
multiply protocol is run. Then �8� c is calculated as in the
real protocol.

6. The shares of each polynomial sharing of .� " is multiplied
by �8� c as in the real protocol.

7. The multiplication over the integers is simulated, with the
last step revealing the check shares over 3 and (individu-
ally. This can be simulated using 3 i n 5(o � 3?46587?� , and
3 i n " o 46587 � for

� V1\�� � . The proofs are run as in the
real protocol, except the proof for ::� is faked by the simula-
tor.

8. The poly-to-sum is simulated.

9. The division by � is simulated using the correct value to
achieve a multiple of � with all leftovers. The check shares
are simulated by having the simulator compute the last one
as ^ * 3 � 46587?� divided by the others.

10. The sum-to-poly is simulated.

� ��� � � ��
 � � �

�� � �
Here we will sketch the proof of security. First we define the RSA
function.

Definition 10 Let (be the security parameter. Let key generator� 	 define a family of RSA functions to be = ��/ � /A� C
	 � 	6= � , C
such that � is a composite number � * �� / where /�/ are
prime numbers of ()� � bits each. The exponent � and modulus �
are made public while

� � � 2 ! 46587� =>� C is kept private. �
The RSA encryption function is public, defined for each mes-

sage �) & 0 as: � * � = ��C!� �
 46587 � . The RSA de-
cryption function (also called signature function) is the inverse:
� * � � 46587 � . It can be performed by the owner of the private
key

�
. The security of RSA is given in Definition 11.

For naming convenience, we will assume our system is used for
direct RSA signing of messages; however, the same protocol could
be used for decryption. Our results simply concern the application
of the RSA function in its assumed intractable direction as a one-
way function (as assumed in protocols with formal security proofs
which employ RSA, e.g. [ACGS]).

Define � �
����= � /"� /}y C to be a “history” of messages/signature
pairs with messages taken by y , and signatures generated using the
RSA secret key = � /A� C .
Definition 11 The RSA security assumption:
Let (be the security parameter. Let key generator

� 	 define a
family of RSA functions (i.e., = ��/ � /A� C�	 � 	6= � , C be an RSA in-
stance with security parameter (). For any probabilistic polynomial-
time adversary � , given a polynomial-size list y of messages cho-
sen uniformly at random:

��� - �
 ��� 46587 � � = ��/ � /A� C�	 � 	6= � , C����) < ~ 8 / � � , �
��	 �?= � , /�� / ��/ � /�� ������= � / � /}y C C 1

is negligible.

Definition 12 Modified RSA security assumption:
Let (be the security parameter, and let ! / / ! � 8 be chosen by an
adversary. Let key generator

� 	 define a family of RSA functions
(i.e., = ��/ � / � C�	 � 	 = � , /q ! / / ! C is an RSA instance in which
� *+=� ! � C = / ! � /?C , with ! / / ! drawn from - 88/}u .) 1 , for
some u�* � =>(BC , and then $/ / drawn randomly from - 8 / .)21
until ! � and / ! � / are found to be prime). For any proba-
bilistic polynomial-time adversary � , given a polynomial-size listy of messages chosen uniformly at random:

�!� - �
 ��� 46587 � � = ��/ � /A� C�	 � 	6= � , /q ! / / ! C����)=<�~ 88/ � � , �
�"	 �?= � , /�� / ��/A� /(! / / ! /�� ����� = � /"� /}y C C 1

is negligible.�$#&%('�)+*-,/.10+%32547698;:54<6�) is the smallest integer such that any
element in = �0 raised by #&%('�) is the identity element. RSA is typically
defined using > %?'+) , the number of elements in = �0 , but it is easy to see
that #&%?'+) can be used instead. We use it because it gives an explicit way to
describe an element of maximal order in = �0 . Note that > %?'+) is a multiple
of #&%?'+) , and that knowing any value which is a multiple of #&%('�) implies
breaking the system.

Lemma 13 If the RSA Security Assumption is true, then the Modi-
fied RSA Security Assumption is true.

Proof: Assume that the Modified RSA Security Assumption
were false. Then there would be a ! , / ! such that the probability
of breaking the system is non-negligible. Note that with probability� =�u 2 � C , the and / chosen by the generator

� 	6= � � ,�� ��� ; C will
be within .) of ! and / ! , and thus with non-negligible proba-
bility, the original RSA system would be broken. �

The above demonstrate that if we get all the additive pieces of but one, and the same for / , still given the resulting � , the RSA
assumption regarding this � holds just as well (up to a polynomi-
ally small advantage). This will determine a simulation strategy,
where a result oracle will be queried with the shares of the “cor-
rupted parties” and will draw the rest of the pieces to generate �
and will then output � and all but one piece for and one for / .
Given the output of that “result oracle” the RSA function is still
secure, which justified our simulation above.

Now we define what it means for a system to be robust. In these
definitions we assume the security parameter (is large enough so
that the analysis holds.

Definition 14 (Robustness) Let (be the security parameter. A
system : is a robust RSA-key-generation system if for any proba-
bilistic polynomial-time

�
-out-of- � adversary � , with all but negli-

gible probability, within polynomial-time, an RSA key is generated
such that the public key = ��/ � C is known, and the secret

�
is shared

among the � shareholders by a degree-
�

polynomial.

Next we define what it means for the system to be secure (RSA
is treated as a one-way function).

Definition 15 (Security) Let (be the security parameter. A sys-
tem : is a = � /"� C -secure RSA-key-generation system if for any prob-
abilistic polynomial-time = � /"� C -restricted adversary � , when : �
(the system running with that adversary) generates an RSA instance,
for any polynomial-size list y of randomly chosen messages sub-
mitted to : � to be signed, for any probabilistic polynomial-time
function � , with : � = ��/ � / � C denoting the system : with the ad-
versary � in which the RSA instance = ��/ � /A� C was generated:

�!� - �
 ��� 46587 � � = ��/ � /A� C�	 : � ���) < ~ 8 / � � , �
��	r� = � , /�� /�����	 � ����n
�6 � 6 0 o� /�� �
����= � / � /(y C C 1

is negligible.

Theorem 16 The protocol is = � / �<C -secure.

Proof: Recall by the argument above, to prove breaking our
system implies breaking the RSA Security Assumption, we sim-
ply need to prove that breaking our system implies breaking the
Modified RSA Security Assumption.

WLOG, assume that the adversary controls shareholders
�

through�
. Also, assume that the adversary knows ! 0 g ! /������ !m� 2 ! and " 0 g ! /4����� /�"�� 2 ! .It is easy to see that the security with this assumption implies secu-

rity without this assumption.
We construct a simulator that reduces the (modified) security of

the RSA function to the security of our system.
We prove that given the values ! ! /����4� / !%� 2 ! /�" ! /4����� /�"�� 2 ! /A� ,

the simulator generates a view of the protocol that is statistically in-
distinguishable from the real protocol (assuming secure channels).
We will again only use the set =>� � /"3 � / (� C in our proof, but it eas-
ily extends to using all =>� " /"3 " /A(" C .

Note that all shareholders behave exactly as in the protocol ex-
cept shareholder :�� , who distributes shares for .!#�6*A8 and ."��6*A8 .

We show that with high probability, any secret values !#� and "��
will correspond to the shares given to the first

�
shareholders.

To see that a value !#� is possible, note that one needs a poly-
nomial ,��<=	-BC in which ,B� =�8�C * y � !%� , and ,B� = \ C2* .,�� = \ C for\)N~ � /�������/ � � , The only question is whether the polynomial has
all coefficients in the correct range. To see this, examine the dif-
ference polynomial

� =	- C *Q, � =	- C # ., � =	- C , where
� =�8�C *Qy � ! � ,

and
� = \ C * 8 for

� V \[V �
. Using interpolation, one can see

that
� =	- C has coefficients that are multiples of y with values in the

range - # y �) /Cy �) 1 (use Lemma 2 from [FGMYa]). Then if the
coefficients of .,�� =	- C are all in the range - y �) /qy �) � # y �) 1 , all
coefficients of ,�� =	- C will be in a valid range (and those shares for
shareholders ~ � /������ / � � would correspond to , � =	- C).

The same argument follows for " � .
Finally, we have already shown a simulation for the multipli-

cation protocol over the integers. (Actually, using the conditions
from step 2 that the polynomials ., � =	- C and .7 � =	- C both have secret8 and coefficients drawn from - y �) /qy �) � # y �) 1 , part of the
simulatability argument for multiplication is avoided.)

For the distributed primality test, the values 3 n '�G g (G o43 � 46587 �
are revealed for all

\
. Note that

3 n ' � g (� o43 � � = 8 � C 3 2 n10 2 . � � �G � � n '�G g)(G o o73 � 46587 � /
assuming � is the product of two primes, so it can be simulated.

Proofs of knowledge and equivalence with the simulated val-
ues .# � 6 5 are simulated using backtracking. with statistical indistin-
guishability.

For the generation of private keys from small public keys, say
�&*
 , the simulator can run three times, once for each !#� � "�� �\ 46587
 , �`V *V
 . The proof for : � non-corrupt shareholders is
simulated using backtracking, with statistical indistinguishability.

Omitted is the security proof for the generation of private keys
from large public keys. �
� w � � ������� ��� ��� � � � ��

 � � � ��� ���

��� �
Lemma 17 Let (be the security parameter. Let modulus gen-
erator

� 	 define a family of modulus generating functions (i.e.,� 	 � 	6= � , C be an RSA modulus with security parameter (). For
any probabilistic polynomial-time adversary � ,

��� - �
 ��� � 46587
� ��= �	�*Q8�C�
0= � �*M8�C � � 	 � 	 = � , C���� /1�)=< ~ 88/ � � , � ��/ � 	�?= � , /�� /1� C 1 is negligible.

Proof: Similar to [B84]. �
Note that if we determine a shareholder is corrupt, we simply

restart the protocol with that shareholder excluded. Also each re-
maining shareholder chooses new =>� " /"3 " /A(" C values.

Theorem 18 The protocol is = � /"� C -robust.

Proof: Distributed Computation of � : Robustness basically
follows from the robustness of multiplication over the integers.
Note that any bad sharings will be caught using the verification
shares in the multiplication over the integers protocol.

Also, if the resulting � is not a Blum integer, all shares are
revealed to find the corrupt shareholders.
Distributed primality test: Note that there are

� ���
good share-

holders that own shares of ! " � " " . They define the polynomial " =	- C . : " broadcasts / " and proves that it knows the discrete log
of / " , and that it is the same as the first part of a representation
of # "�6 5 over 3 � $ &� and (� . Say the representation used by : " was=�S /(S ! C . If S��* =@! " � " " C��� , this would imply that : " knows two

representations for # "�6 5 , i.e. 3�� $ & U� (U +� and 3 $�& n '�G g)(G o� (� � , and thus

it knows values, � *aS # =@! " � " " C�� and
� * S ! # � such that

3
� * (� � 46587 � . The probability of this is small, by Lemma 17.
(A slightly different argument is used for : ! .)
Generation of Public and Private Keys:
Small Public Keys: The generation of 3 is robust using the binding
property of the Simulator-Equivocal Commitments. Every share-
holder can compute 3 '�G g)(G 46587 � for itself, using the value of/ " . Say :�" reveals -%" . If it is not !%" � "�" 46587
 , and if :�" proves
knowledge of the discrete log of 3,'�G g)(G"3 2 � G 46587 � with base 3 � ,
then it knows - / �B/(S such that 3 �qU � 3 ' G g (G 2 ��G�� 3 � � g � 46587 � ,
where 8 V � V
 . In this case,

 S #
 - # � is a non-trivial multiple
of ? =>� C , since

 S #
 - # � �*N8 , and 3 �qU 2 � � 2 �v� � 46587 � .
Large Public Keys: Omitted. �
��� � � � � � � � � � � � ���

�� �	� � � � � � ��� �
 � � ��� � � �

In typical systems, we expect (to be on the order of
� 8b8h8 (i.e.� 8 � -

� 8���); working over the integers will add less than b8b8 to the
size of exponents, assuming that assurance of

� 2 � 5 is reasonable.
We would expect � to be less than

� 8 , and
� 2 ; chance of error on

proofs with u * b8 to be sufficient assurance of correctness.
The probability of generating an RSA modulus from two ran-

dom primes of ()� � bits each is about =>()� � C 2 � , so we will have
about (� �� rounds. The communication complexity of each round
is bounded by � = ��u (9C and the computational complexity of each
round is about � = � =�u � � C C modular exponentiations. Given realis-
tic values of u and

�
, the computational complexity is dominated by

the multiplication protocol and would be about
� D� = �D��� C modular

exponentiations. Unfortunately, we cannot gain much efficiency by
performing trial division as discussed in Boneh and Franklin, since
each trial against a small prime would involve a robust multiplica-
tion, and thus around � = � � �����	� �?C modular exponentiations for
each distributed integer tested.

Nevertheless, numerous practical improvements can be made.
First, trial division can be done once a possible � is generated, and
this would eliminate many distributed double-primality tests. Also,
if the test that each ! " and " " are in the correct range is done after
this trial division, then many of those can be saved. (In this case,� needs to be tested to make sure it is in a possible range, so that
flagrant misbehavior of shareholders can be determined.)

Perhaps the largest improvement would come from revealing
the value of each ! " mod the product
 of small primes up to some� , and assuming the shared value is a multiple of the
 . The sum
of the revealed values could be tested to see if it is divisible by any
of the small primes up to � . If so, the distributed integer would
not be prime and would be thrown out. Of course, this reduces the
security of the problem, so it would probably be done for primes
up to, say, � . This reduces the security by about 6 bits (� 5� = = � #� C � =
 # � C � =�� #0� C � =�� # � C C), but would increase the probability
that the number is prime by a factor of about 5 and thus reduce the
expected number of rounds for the protocol by a factor of about
25. (If the reduction in security is worrisome, (could be slightly
increased without affecting the running time significantly. Or we
could only use primes

�
and

, reducing the security by about 1 bit,

while reducing the expected number of rounds for the protocol by
about � .)

With the improvements described above, the total number of
modular exponentiations in our protocol will be about

� � = � ��� C
times =>()� � 8�C � (reduced from =>()� � C � because of our substitute for
trial division), which is about

� 8b8b8h8 . For the case � * and
� * � ,

we get
� /(8h8b8 /�8h8b8 modular exponentiations. The non-robust pro-

tocol of Boneh-Franklin using trial division up to �8/ � 8
 performs
about ��� modular exponentiations, about a factor of b8b8h8 less.
Next we show further interesting improvements.

If it is likely that all parties are honest, one can increase per-
formance by performing what is known as “optimistic execution”.
The idea is to run the protocol in this paper (plus the trial division
from Boneh-Franklin) but without any checking information. That
is, there would be no companion polynomials or verification shares
generated. At the end of each round in which the participants failed
to produce an RSA modulus, they reveal all their information from
the round. If all participants agree that the information revealed
is correct, then there has been no cheating in that round, and they
proceed. If cheating is ever found, they revert to the robust proto-
col described in this paper. If an RSA modulus is found, then they
rerun the round using the same polynomials sharings, but includ-
ing the robustness checks (i.e., companion polynomials, verifica-
tion shares, proofs of knowledge). If all the information is verified
correctly, then they use that RSA modulus. Otherwise, cheating has
occurred and they revert to the robust protocol.

The problem with this “mode” of operation is that cheating can
be detected, but it is impossible to determine exactly which par-
ticipant cheated. To determine who cheated, we can require that
participants sign their messages to other participants, and have re-
cipients of messages either accept the signature or ask the sender to
reveal the message to everyone. Assuming the signatures are RSA
signatures on participants’ private keys, we can assume that they re-
quire a single modular exponentiation. Furthermore, we could use
one signature per round, or even over multiple rounds, to reduce
the number of modular exponentiations. In all, this method will
still be robust and secure (with some standard assumptions about
security and robustness of signatures and encryptions), but require
only about � � times the modular exponentiation of the non-robust
protocol, where � is the number of participants. We expect this
variant to be used in practice. (Note that this only works when� �
�� � � , because we cannot use ZK proofs to guarantee correct
shares in the multiplication protocol.)

��� $ � � �
� � ��� � � � � � � �8�

���	��� � �
Once a composite � is established there are various ways to use it
in various cryptographic protocols other than as a distributed RSA
system:

1. The parties can initiate a “composite ElGamal” system. They
draw a random element 3 and generate public key � *	3 �
where - is shared among the parties using either an additive
or polynomial sharing scheme.

2. Users register for an identification protocol by using the avail-
ability of � to generate a quadratic residue for which they
keep the root as a secret.

3. Users can engage in the Yao’s secret bit exchange protocol,
where they both encrypt the value under � and simultane-
ously reveal the decryption bit by bit.

4. Using = ��/"� C , users can use RSA as a public commitment
scheme (i.e. using it as a one-way function) which cannot be
opened unless the majority wants to do it. One application
for this is the escrow of plaintexts.

� � � �
 ��� � � �
[ACGS] W. Alexi, B. Chor, O. Goldreich and C. Schnorr. RSA and Rabin

Functions: Certain Parts are as Hard as the Whole. In SIAM
Journal of Computing, volume 17, n. 2, pages 194–209, April
1988.

[B84] E. Bach, Discrete Logarithms and Factoring. Tech. Report No.
UCB/CSD 84/186. Computer Science Division (EECS), Univer-
sity of California, Berkeley, CA. June 1984.

[BGW] Ben-Or M., S. Goldwasser and A. Wigderson, Completeness
Theorem for Non cryptographic Fault-tolerant Distributed Com-
puting, STOC 1988, ACM, pp. 1-10.

[B82] M. Blum, “Coin flipping by telephone: a protocol for solving
impossible problems,” IEEE Computer Conference 1982, 133–
137.

[BF97] D. Boneh and M. Franklin, Efficient Generation of Shared RSA
Keys, Crypto 97, pp. 425–439.

[B88] C. Boyd, Digital Multisignatures, IMA Conference on Cryptog-
raphy and Coding, Claredon Press, 241–246, (Eds. H. Baker and
F. Piper), 1986.

[BCLL] G. Brassard, C. Crépeau, S. Laplante, C. Léger. Computation-
ally Convincing proofs of knowledge, In Proceedings of the 8th
Symp. on Theoretical Aspects of Computer Science (Springer,
Berlin, 1991), pp. 251–262.

[BGM] E. Brickell, D. Gordon and K. McCurley. Fast Exponentiation
with Precomputation Advances in Cryptology – Eurocrypt 92
Proceedings, Lecture Notes in Computer Science Vol. 658,
R. Rueppel ed., Springer-Verlag, 1992.

[CCD] D. Chaum, C. Crepeau and I. Damgard, Multiparty Uncondition-
ally Secure Protocols, STOC 1988, ACM, pp. 11-19.

[CEG] D. Chaum, J.-H. Evertse and J. van de Graaf, Multiparty compu-
tations ensuring privacy of each party’s input and correctness of
the result, Advances in Cryptology – Eurocrypt 88 Proceedings,
Lecture Notes in Computer Science Vol. 330, C. Gunther ed.,
Springer-Verlag, 1988, pp. 87–119.

[CEGP] D. Chaum, J.-H. Evertse, J. van de Graaf and R. Peralta, An im-
proved protocol for demonstrating possession of discrete log-
arithms and some generalizations, Advances in Cryptology –
Crypto 86 Proceedings, Lecture Notes in Computer Science
Vol. 263, A. Odlyzko ed., Springer-Verlag, 1986, pp. 200–212.

[CGMA] B. Chor, S. Goldwasser, S. Micali and B. Awerbuch, Verifiable
Secret Sharing and Achieving Simultaneous Broadcast, Pro-
ceedings of the 26th Symposium on Foundations of Computer
Science, IEEE, 1985, pp. 335-344.

[DDFY94] A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung, How to
Share a Function Securely, ACM Proceedings of the 26th An-
nual Symposium on Theory of Computing, ACM, 1994, pp. 522-
533.

[DF89] Y. Desmedt and Y. Frankel, Threshold cryptosystems, Advances
in Cryptology – Crypto 89 Proceedings, Lecture Notes in Com-
puter Science Vol. 435, G. Brassard ed., Springer-Verlag, 1989,
pp. 307-315.

[DH] W. Diffie and M. Hellman, New Directions in Cryptography ,
IEEE Trans. on Information Theory 22 (6), 1976, pp. 644-654.

[FFS] U. Feige, A. Fiat and A. Shamir, Zero-Knowledge Proof of Iden-
tity, Proceedings of the Nineteenth annual ACM Symp. Theory
of Computing, 1987, pp 210–217.

[F] P. Feldman, A Practical Scheme for Non-Interactive Verifiable
Secret Sharing, Proceedings of the 28th Symposium on Foun-
dations of Computer Science, IEEE, 1987, pp.427-437

[FS86] A. Fiat and A. Shamir, “How to prove yourself: Practical solu-
tions to identification and signature problems,” in Advances in
Cryptology—CRYPTO ’86 Proceedings (Lecture Notes in Com-
puter Science, Vol. 263), ed. A. Odlyzko, 186–194, Springer-
Verlag, New York, 1987.

[F89] Y. Frankel, A practical protocol for large group oriented net-
works, In J. J. Quisquater and J. Vandewalle, editor, Advances in
Cryptology, Proc. of Eurocrypt ’89, (Lecture Notes in Computer
Science 773), Springer-Verlarg, pp. 56-61.

[FGY] Y. Frankel, P. Gemmell and M. Yung, Witness Based Crypto-
graphic Program Checking and Robust Function Sharing. Pro-
ceedings of the 28th Annual Symposium on Theory of Comput-
ing, ACM, 1996, pp. 499-508.

[FGMY] Y. Frankel, P. Gemmel, P. MacKenzie and M. Yung. Proactive
RSA, Crypto 97.

[FGMYa] Y. Frankel, P. Gemmel, P. MacKenzie and M. Yung. Optimal
Resilience Proactive Public-Key Cryptosystems, FOCS 97.

[FS89] U. Feige and A. Shamir. Zero knowledge proofs of knowledge
in two rounds. CRYPTO 1989, 20–24.

[FY93] M. Franklin and M. Yung, Secure and Efficient Off-Line Digital
Money, Proc. of the 20th Int. Col. on Automata, Languages and

Programming (ICALP), 1993, LNCS 700, Springer Verlag, pp.
265-276.

[GHY] Z. Galil, S. Haber and M. Yung, Minimum-Knowledge Interac-
tive Proof for Decision Problems, SIAM J. Comp., 18, 1989, pp
711–739.

[GHY85] Z. Galil, S. Haber and M. Yung, Symmetric Public-Key Cryptog-
raphy Crypto 85.

[GHY87] Z. Galil, S. Haber and M. Yung, Cryptographic Computations:
Secure Fault Tolerant Protocols in the Public Key Model, Crypto
87, pp. 135-155.

[GJKR] R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin, Robust Thresh-
old DSS Signatures, Advances in Cryptology – Eurocrypt 96
Proceedings, Lecture Notes in Computer Science Vol. 1070,
U. Maurer ed., Springer-Verlag, 1996, pp. 354-371.

[Gr97] O. Goldreich, On Foundations of Modern Cryptography, an in-
vited paper, Crypto 97.

[GMW86] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that yield
nothing but their validity and a methodology of cryptographic
protocol design,” IEEE FOCS 1986, 174–187.

[GMW] O. Goldreich, S. Micali, and A. Wigderson, How to play any
mental game, Proceedings of the Nineteenth annual ACM Symp.
Theory of Computing, 1987, pp 218–229.

[Gw97] S. Goldwasser, A New Directions in Cryptography: Twenty
something years after, an invited paper, FOCS 97.

[GMR] S. Goldwasser, S. Micali and C. Rackoff, The Knowledge Com-
plexity of Interactive Proof-Systems, Siam J. on Computing,
18(1) (1989), pp. 186-208.

[HW] G. Hardy and E. Wright An introduction to the theory of
numbers, Oxford Science Publications, London, Great Britain,
fifth ed., 1985

[HJJKY] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, M. Yung,
Proactive Public-Key and Signature Schemes Proceedings of the
Fourth Annual Conference on Computer and Communications
Security, ACM, 1996.

[IY87] R. Impagliazzo, and M. Yung, “Direct minimum-knowledge
computation,” in Advances in Cryptology—CRYPTO ’87 Pro-
ceedings (Lecture Notes in Computer Science, Vol. 293), ed.
C. Pomerance, 40–51, Springer-Verlag, New York, 1988.

[K] J. Kilian, “Founding cryptography on oblivious transfer,” ACM
STOC 1988, 20–31.

[M76] G. Miller, Riemann’s Hypothesis and Test of Primality, J. of
Comp. and Syst. Sciences, 13, 300–317, 1976.

[OY91] R. Ostrovsky and M. Yung, How to withstand mobile virus at-
tacks, Proc. of the 10th ACM Symposium on the Principles of
Distributed Computing, 1991, pp. 51-61.

[P] T.P. Pedersen, Distributed Provers with Applications to Un-
deniable Signatures, Advances in Cryptology – Eurocrypt 91
Proceedings, Lecture Notes in Computer Science Vol. 547,
D. Davies ed., Springer-Verlag, 1991, pp. 221-242.

[P2] T.P. Pedersen, A threshold cryptosystem without a trusted party,
Advances in Cryptology – Eurocrypt 91 Proceedings, Lecture
Notes in Computer Science Vol. 547, D. Davies ed., Springer-
Verlag, 1991, pp. 129-140.

[P91] T.P. Pedersen, Non-interactive and information theoretic secure
verifiable secret sharing, Advances in Cryptology – Crypto 91
Proceedings, Lecture Notes in Computer Science Vol. 576,
J. Feigenbaum ed., Springer-Verlag, 1991, pp. 129-140.

[RSA] R. Rivest, A. Shamir and L. Adleman, A Method for Obtain-
ing Digital Signature and Public Key Cryptosystems, Comm. of
ACM, 21 (1978), pp. 120-126.

[Sh] A. Shamir, How to share a secret, Comm. of ACM, 22 (1979),
pp. 612-613.

[Y82a] A. C. Yao, Theory and Applications of Trapdoor functions, Pro-
ceedings of the 23th Symposium on the Foundation of Computer
Science, 1982, pp. 80-91.

[Y82] A. C. Yao, “Protocols for secure computations,” IEEE FOCS
1982, 160–164.

[Y86] A. C. Yao, “How to generate and exchange secrets,” IEEE FOCS
1986, 162–167.

