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Abstract

COCA is a fault-tolerant and secure on-line certification authority that has
been built and deployed both in a local area network and in the Internet.
Extremely weak assumptions characterize environments in which COCA’s
protocols execute correctly: no assumption is made about execution speed
and message delivery delays; channels are expected to exhibit only inter-
mittent reliability; and with 3t + 1 COCA servers up to t may be faulty or
compromised. COCA is the first system to integrate a Byzantine quorum
system (used to achieve availability) with proactive recovery (used to de-
fend against mobile adversaries which attack, compromise, and control one
replica for a limited period of time before moving on to another). In addition
to tackling problems associated with combining fault-tolerance and security,
new proactive recovery protocols had to be developed. Experimental results
give a quantitative evaluation for the cost and effectiveness of the protocols.

Categories and Subject Descriptors: C.2.0 [Computer-Communication
Networks]: General—security and protection; C.2.4 [Computer-Communication
Networks] Distributed Systems—client/server; D.4.5 [Operating Systems]:
Reliability—fault-tolerance; D.4.6 [Operating Systems]: Security and Protection—
authentication, cryptographic controls; E.3 [Data]: Data Encryption—public
key cryptosystems.



1 Introduction

In a public key infrastructure, a certificate [52] specifies a binding between
a name and a public key or other attributes. Over time, public keys and
attributes can change—a private key might be compromised, leading to se-
lection of a new public key, for example. The old binding and the certificate
that specifies that binding then become invalid. A certification authority
(CA) attests to the validity of bindings by issuing digitally signed certifi-
cates that specify these bindings and by providing a means for clients to
check the validity of certificates. With an on-line CA, principals can check
the validity of certificates just before using them. COCA (Cornell On-line
Certification Authority), the subject of this paper, is such an on-line CA.

COCA employs replication to achieve availability and employs proactive
recovery with threshold cryptography for digitally signing certificates in a way
that defends against mobile adversaries [68] which attack, compromise, and
control one replica for a limited period of time before moving on to another.
In that, the system is not novel. What distinguishes COCA is its qualitatively
weaker assumptions about communication links and execution timing. Many
denial of service attacks succeed by invalidating stronger communication and
execution-timing assumptions; in making weaker assumptions, COCA is less
vulnerable to these attacks.

New proactive recovery protocols had to be developed for execution in this
relatively unconstrained and more realistic environment. Moreover, because
implementing agreement is problematic in the absence of execution-timing
assumptions [27], COCA employs a Byzantine quorum system [56] (rather
than the state machine approach [54]) for managing replicated state. In so
doing, COCA is the first to tackle the problems associated with integrating
threshold cryptography and Byzantine quorum systems. Thus, beyond its
intrinsic utility for public key infrastructures, COCA has pedagogical value
as a vehicle for understanding how to combine mechanisms for supporting
fault-tolerance and security properties.

Besides its weak assumptions, a variety of traditional means for combat-
ing denial of service attacks are used by COCA: (i) processing only those
requests that satisfy authorization checks, (ii) grouping requests into classes
and multiplexing resources so that demands from one class cannot impact
processing of requests from another, as well as (iii) caching results of expen-
sive cryptographic operations. And while resource-clogging denial of service
attacks certainly remain possible, experiments demonstrate that launching a

1



successful attack against COCA is harder with these mechanisms in place.
In fact, simulated denial of service attacks have allowed us to measure the
effectiveness of the various means COCA employs to resist denial of service
attacks, so the work reported herein provides some much-needed experimen-
tal data on the performance of traditional denial of service defenses.

The paper is organized as follows. Section 2 discusses our assumptions
about the environment in which COCA operates and describes the services
COCA provides. Protocols to coordinate COCA servers are the subject of
Section 3. Section 4 elaborates on the mechanisms COCA incorporates to
defend against denial of service attacks. Performance data for COCA de-
ployments both in a local area network and in the Internet are summarized
in Section 5, followed by a discussion of related work in Section 6. Section 7
contains concluding remarks.

2 System Model and Services Supported

COCA is implemented by a set of servers, each running on a separate pro-
cessor in a network. We intend COCA for use in an environment like the
Internet. Thus, COCA tolerates failures and defends against malicious at-
tacks, subject to the following assumptions:

Servers: Servers are either correct or compromised, where a compromised
server might stop executing, deviate arbitrarily from its specified proto-
cols (i.e., Byzantine failure), and/or disclose information stored locally.
System execution is viewed in terms of protocol-defined periods called
windows of vulnerability ; terms “correct” and “compromised” are rel-
ative to those periods. Specifically, a server is deemed correct in a
window of vulnerability if and only if that server is not compromised
throughout that period. We assume:

• At most t of the n COCA servers are ever compromised during
each window of vulnerability, where 3t + 1 ≤ n holds.

• Clients and servers can digitally sign messages using a scheme
that is existentially unforgeable under adaptively chosen message
attacks.

• Various cryptographic algorithms (e.g., public key cryptography
and threshold cryptography) that COCA employs are secure.
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Fair Links: A fair communication link does not necessarily deliver all
messages sent, but if a process, using such a link, sends infinitely many
messages to a single destination then infinitely many of those messages
are correctly delivered. (Without some comparable assumption about
the network, an adversary could prevent servers from communicating
with each other or with clients.)

Asynchrony: There is no bound on message delivery delay or server exe-
cution speed.

These assumptions endow adversaries with considerable power. Adversaries
can

• attack servers, provided fewer than 1/3 of the servers are compromised
within a given window of vulnerability,

• launch eavesdropping, message insertion, corruption, deletion, reorder-
ing, and replay attacks, provided Fair Links is not violated, and

• conduct denial of service attacks that delay messages or slow servers
by arbitrary finite amounts.

2.1 Operations Implemented by COCA

COCA supports one operation (Update) to create, update, and invalidate
certificates that specify bindings; a second operation (Query) retrieves cer-
tificates specifying those bindings. A client invokes an operation by issuing a
request and then awaiting a response. COCA expects each request to contain
a nonce. Responses from COCA are digitally signed using a COCA service
key and include the client’s request, hence the nonce1, thereby enabling a
client to check whether a given response was produced by COCA for that
client’s request.

A request is considered accepted by COCA once any correct COCA server
receives the request or participates in processing the request; and a request is
considered completed once some correct server has constructed the response.
It might, at first, seem more natural to deem a request “completed” only

1In the current implementation, requests contain sequence numbers which, along with
the client’s name, form unique numbers. Therefore, the text of the request itself can serve
as the nonce.
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when the client receives a response. However, such a definition would make a
client action (receipt of a response) necessary for a request to be considered
completed. In the absence of assumptions about clients, it then becomes
problematic for COCA to implement

Request Completion: Every request accepted is eventually completed.

However, as will become clear, a correct client making a request will eventu-
ally receive a response from COCA.

Each COCA certificate ζ is a digitally signed attestation that specifies
a binding between some name cid and some public key or other attributes
pubK . In addition, each certificate ζ also contains a unique serial number
σ(ζ) assigned by COCA. The following semantics of COCA’s Update and
Query give meaning to the natural ordering on these serial numbers—namely,
that a certificate for cid invalidates certificates for cid having lower serial
numbers.

Update: Given a certificate ζ for a name cid and given a new binding pubK ′

for cid , an Update request returns an acknowledgment after COCA has
created a new certificate ζ ′ for cid such that ζ ′ binds pubK ′ to cid and
σ(ζ) < σ(ζ ′) holds.

Query: Given a name cid , a Query request Q returns a certificate ζ for cid
such that:

(i) ζ was created by some Update request that was accepted before
Q completed.

(ii) For any certificate ζ ′ for name cid created by an Update request
that completed before Q was accepted, σ(ζ ′) ≤ σ(ζ) holds.

By assuming an initial default binding for every possible name, the op-
eration to create a first binding for a given name can be implemented by
Query (to retrieve the certificate for the default binding) followed by Update.
And an operation to revoke a certificate for cid is easily built from Update
by specifying a new binding for cid .

Update creates and invalidates certificates, so it should probably be re-
stricted to certain clients. Consequently, COCA allows an authorization
policy to be defined for Update. In principle, a CA could always process a
Query, because Query does not affect any binding. In practice, that policy
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would create a vulnerability to denial of service attacks, so COCA adopts a
more conservative approach discussed in Section 4.

The semantics of Update associates larger serial numbers with newer cer-
tificates and, in the absence of concurrent execution, a Query for cid returns
the certificate whose serial number is the largest of all certificates for cid .
Certificate serial numbers are actually consistent only with a service-centric
causality relation: the transitive closure of relation →, where ζ → ζ ′ holds
if and only if ζ ′ is created by an Update having ζ as input. Two Update
requests U and U ′ submitted, for example, by the same client, serially, and
where both input the same certificate, are not ordered by the → relation.
So, our semantics for Update allows U to create a certificate ζ, U ′ to create
a certificate ζ ′, and σ(ζ ′) < σ(ζ) to hold—consistent with the service-centric
causality relation but the opposite of what is required for serial numbers con-
sistent with Lamport’s more-useful potential causality relation [54] (because
execution of U is potentially causal for execution of U ′).

COCA is forced to employ the service-centric causality relation because
COCA has no way to obtain information it can trust about causality involv-
ing operations it does not itself implement. Clients would have to provide
COCA with that information, and compromised clients might provide bogus
information.

Update and Query are not indivisible and (as will become apparent in
Section 3) are not easily made so: COCA’s Update involves separate actions
for the invalidation and for the creation of certificates. In implementing
Update, we contemplated either possible ordering for these actions: Execute
invalidation first, and there is a period when no certificate is valid; execute
invalidation last, and there is a period when multiple certificates are valid.

We wanted Query always to return a certificate, so avoiding periods with
no valid certificate for a given name would have meant synchronizing Query
with concurrent Update requests. We rejected this because the synchroniza-
tion creates an execution-time cost and introduces a vulnerability to denial
of service attacks—repeated requests by an attacker for one operation could
now block requests for another operation. Our solution is to have Update
create the new certificate before invalidating the old one, but it too is not
without unpleasant consequences. Both of the following cannot now hold.

(i) A certificate for cid is valid if and only if it is the certificate for cid
with largest serial number.

(ii) Query always returns a valid certificate.
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COCA clients therefore must accommodate our more-complicated semantics
for Query and program their own synchronization.

2.2 Bounding the Window of Vulnerability

The duration of COCA’s window of vulnerability cannot be characterized
in terms of real time due to our Asynchrony assumption, so its duration
is defined in terms of events marking the completion of proactive recovery
protocols that are executed periodically to:

• reload the code (thereby eliminating Trojan horses),

• reconstitute the state of each COCA server (which might have been
corrupted during the previous window of vulnerability), and

• obsolete any confidential information an attacker might have obtained
by compromising servers.

Each window of vulnerability at a COCA server begins when that server
starts executing the proactive recovery protocols and terminates when that
server has again started and finished those protocols. Thus, every execution
of the proactive recovery protocols is part of two successive windows of vul-
nerability. COCA is agnostic about when the proactive recovery protocols
start. Currently, each COCA server attempts to run these protocols after a
specified interval has elapsed on its local clock but (to avoid denial of service
attacks) a server will refuse to participate in the protocols unless enough time
has passed on its clock since they last executed.

In theory, using protocol events to delimit the window of vulnerability
affords attackers leverage. Denial of service attacks that slow servers and/or
increase message delivery delays expand the real-time duration for the win-
dow of vulnerability, creating a longer period during which attackers can try
to compromise more than t servers. But in practice, we expect assumptions
about timing can be made for those portions of the system that have not
been compromised.2 Given such information about correct server execution
speeds and message-delivery delays, real-time bounds on the window of vul-
nerability can be computed.

2A server that violates these stronger execution timing assumptions might be considered
compromised, for example.
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Limiting the Utility of Compromised Keys

Server Keys. Each COCA server maintains a private/public key pair, and
the public key is known by all COCA servers. These public keys allow servers
to authenticate the senders of messages they exchange with other servers.

In the absence of tamper-proof co-processors, server keys must be re-
freshed as part of proactive recovery. One simple approach has trusted ad-
ministrators for each server invent and propagate new public keys through
secure channels implemented by having an administrative public/private key
pair. The administrative public key is known to other administrators (and
all servers); the administrative private key, kept off-line most of the time as
a defense against on-line attacks, is used to sign notification message for the
new public server public key. Other rekeying schemes are discussed in [9].

Public keys of COCA servers are not given to COCA clients so that clients
need not be informed of changed server keys—attractive in a system with a
large number of clients and where server keys are periodically refreshed.

Service Key. There is one service private/public key pair. It is used for
signing responses and certificates. All clients and servers know the service
public key.

The service private key is held by no COCA server. Instead, different
shares of the key are stored on each of the servers, and threshold cryptog-
raphy [22, 23, 20, 21, 31] is used to construct signatures on responses and
certificates. To sign a message:

(1) each COCA server generates a partial signature from the message and
that server’s share of the service private key;

(2) some COCA server combines these partial signatures and obtains the
signed message.3

With (n, t + 1) threshold cryptography, t + 1 or more partial signatures are
needed in order to generate a signature. An adversary must therefore com-
promise t + 1 servers in order to forge COCA signatures.

3Having a client combine the partial signatures instead of having COCA do it introduces
a vulnerability to denial of service attacks. Clients, lacking COCA server public keys, do
not have a way to authenticate the origins of messages conveying the partial signatures.
Therefore, a client could be bombarded with bogus partial signatures, and only by actually
trying to combine these fragments—an expensive enterprise—could the bona fide partial
signatures be identified.

7



Proactive Secret Sharing. A mobile adversary might compromise t + 1
servers over a period of time and, in so doing, collect the t + 1 shares of the
service private key. Consequently, COCA employs a proactive secret sharing
protocol to refresh these shares, periodically generating a new set of shares
for the service private key. New shares cannot be combined with old shares to
construct signatures. And periodic execution of this proactive secret sharing
protocol ensures that a mobile adversary can forge COCA signatures only by
compromising t + 1 servers in the interval between protocol executions.

The proactive secret sharing protocol that COCA employs makes no syn-
chrony assumptions (which would be incompatible with the Asynchrony as-
sumption of Section 2), unlike prior work (e.g., [45, 43, 42, 30, 29]); details
are discussed in [86, 85]. For the discussion in this paper, we regard the
protocols simply as services that COCA invokes.

Server Code and State Recovery

Part of proactive recovery should include refreshing the states and reloading
the code at COCA servers. The state of a COCA server involves a set of
certificates. In theory, this state could be refreshed by performing a Query
request for each name that could appear in a certificate, but the cost of such
an enumeration would be prohibitive. So instead, during proactive recovery,
a list with the name and serial number for every valid certificate stored by
each COCA server is sent to every other server. Upon receiving this list, a
server retrieves any certificates that appear to be missing. Certificates stored
by COCA servers are signed (by COCA), so each certificate can be checked
to make sure it is not bogus. The certificate serial numbers enable servers
to determine which of their certificates have been invalidated (because a
certificate for that same name but with a higher serial number exists).

Server code should be reloaded from some read-only media or other
trusted source by proactive recovery in order to eliminate any Trojan horses
installed by attackers during the previous window of vulnerability. This
functionality is not currently implemented in our prototype, however, since
defending against such attacks is not the focus of our research; see Castro [10]
for an in-depth discussion of the issues.

There is one non-obvious point of interaction between proactive recovery
and request processing. To satisfy Request Completion, an accepted request
that has not been completed when a window of vulnerability ends must be-
come an accepted request in the next window of vulnerability. Therefore,
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such a request must be propagated to other servers as part of proactive
recovery. So each correct server, when executing the proactive recovery pro-
tocol, resubmits to all servers any request that is then in progress and awaits
acknowledgments from at least t + 1 servers. Some server that is correct in
this next window of vulnerability necessarily receives that request, and that
means this accepted request in the previous window of vulnerability also
becomes an accepted request in the new window of vulnerability. To avoid
a spate of new requests from delaying termination of proactive recovery (a
potential denial of service attack), COCA servers could ignore such new re-
quests.4 In those rare cases where a re-started request has not finished before
a new proactive recovery is started, COCA could delay proactive recovery
until after the processing of those re-started requests has been completed.

In practice, windows of vulnerability will tend to be long (viz. days) rela-
tive to the time (5 seconds or less) required for processing a Query or Update
request. It is thus extremely unlikely that a request restarted in a subsequent
window of vulnerability would not be completed before proactive recovery is
again commenced.

3 Protocols

In COCA, every client request is processed by multiple servers and every
certificate is replicated on multiple servers. The replication is managed as
a dissemination Byzantine quorum system [56], which is feasible because we
have assumed 3t+1 ≤ n holds. So servers are organized by COCA into sets,
called quorums, satisfying:5

Quorum Intersection: The intersection of any two quorums contains at
least one correct server.

Quorum Availability: A quorum comprising only correct servers always
exists.

4The time to execute proactive recovery tends to be short, and ignoring (a finite number
of) messages is permitted by the Fair Links assumption.

5Provided there are 3t + 1 servers and at most t of those servers may be compromised,
the quorum system {Q : |Q| = 2t + 1} constitutes a dissemination Byzantine quorum
system. For simplicity, we assume n = 3t + 1 holds; the protocols are easily extended to
cases where n > 3t + 1 holds.
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And every client request is processed by all correct servers in some quorum.
Detailed protocols for Query and Update appear as an Appendix; in this

section, we explain the main ideas behind the design of these protocols.
Technical challenges the protocols must address include:

• Because requests are processed by a quorum of servers but not nec-
essarily by all correct COCA servers, different correct servers might
process different Update requests. Consequently, different certificates
for a given name cid are stored by correct servers. Certificate serial
numbers provide a solution to the problem of determining which of
those certificates is the one to use.

• Because clients do not know COCA server public keys, a client mak-
ing a request cannot authenticate messages from a COCA server and,
therefore, cannot determine whether a quorum of servers has processed
that request. The solution is for some COCA servers to become del-
egates for each request. A delegate presides over the processing of a
client request and, being a COCA server, can authenticate server mes-
sages and assemble the needed partial signatures from other COCA
servers. A client request is handled by t+1 delegates to ensure that at
least one of these delegates is correct.

• Because communication is done using fair links, retransmission of mes-
sages may be necessary.

Figure 1 gives a high-level view of how COCA operates by depicting one
of the t + 1 delegates and the quorum of servers working with that delegate
to handle a client request. The figure shows a client making its request by
sending a signed message to t + 1 COCA servers. Each server that receives
this message assumes the role delegate for the request. A delegate engages a
quorum of servers to handle the request (by sending that request to all COCA
servers) and constructs a response to the request based on the responses
received from that quorum. The delegate then causes this response to be
signed by the service—this involves running a threshold signature protocol
in cooperation with t other servers. Once signed, the response is sent by the
delegate to the client. Upon receipt, the client checks that the response is
correctly signed by the service and contains the client’s original request; if
it isn’t or if no response has been received within a specified period of time,
then the client simply again sends the original request to t + 1 servers.
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Figure 1: Overview of client request processing.

Protocol Details

Certificate Serial Numbers. The serial number σ(ζ) for a COCA certifi-
cate ζ is implemented as a pair 〈v(ζ), h(Rζ)〉, where v(ζ) is a version number
and h(Rζ) is a collision-resistant hash of the Update request Rζ that led to
creation of ζ. Version numbers encode the service-centric causality relation
as follows.

• The first certificate created to specify a binding for a name cid is as-
signed version number 0.

• A certificate ζ ′ produced by an Update given certificate ζ is assigned
version number v(ζ ′) = v(ζ) + 1.

Because different requests have different collision-resistant hashes, certifi-
cates created by different requests have different serial numbers. The usual
lexicographic ordering on serial numbers yields the total ordering on serial
numbers we seek—an ordering consistent with the transitive closure of the
→ relation.

Note that, even with serial numbers on certificates, the same new cer-
tificate will be created by COCA if an Update request is re-submitted, and
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Update requests are thus idempotent. This is because the serial number of a
certificate is entirely determined by the arguments in the request that creates
the certificate.

Determining a Response for Query. It suffices to consider an abstract
description of COCA’s Update and Query protocols in order to characterize
responses satisfying parts (i) and (ii) in the specification for Query. The
actual protocols refine this abstract description.

COCA Update requests are processed by correct servers in some quorum
and not necessarily by all correct COCA servers. Consequently, a correct
COCA server p can be ignorant of certificates having larger serial numbers
than p stores for a name cid . Part (ii) in the specification for Query implies
that all completed Update requests (hence, all certificates) must be taken into
account in determining the response to a Query request Q. Therefore, a quo-
rum of servers must be engaged in processing Q. Responses from a quorum
Q of servers is guaranteed if all COCA servers are contacted. Provided each
server in Q responds with the certificate (signed by COCA) it stores having
the largest serial number among all certificates (for cid) known to the server,
then the certificate ζ having the largest serial number among the correctly
signed certificates received in the responses from Q can serve as the response
to Q. That is, ζ will satisfy part (i) and part (ii) in the specification for
Query.

We first show that any certificate ζ obtained by refining the protocol out-
lined above satisfies part (i). Part (i) stipulates that a certificate returned for
Query is created by an accepted Update; it is satisfied by ζ if each certificate
is signed by COCA only after the Update request creating that certificate has
been accepted. This is because the (n, t + 1) threshold cryptography being
employed for digital signatures requires cooperation (collusion) by more than
t servers in order to sign a certificate. Given our assumption of at most t
compromised servers, we conclude that there are not enough compromised
servers to create bogus signed certificates. Therefore, when a certificate is
signed, a correct server must have participated in processing the request that
created the certificate; the request creating the certificate had to have been
accepted.

Part (ii) of the specification for Query requires that, for any Update request
U naming cid and completed before Q is accepted, σ(ζ ′) ≤ σ(ζ) must hold
where ζ ′ is the certificate created by U . This holds for implementations
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that refine the abstract description given above due to Quorum Intersection,
because some correct server p in Q must also be in the quorum that processed
U . Let certificate ζp be p’s response for Q. Server p always chooses the
certificate for cid with the largest serial number, so σ(ζ ′) ≤ σ(ζp) holds.
And because ζ is the certificate that has the largest serial number among
those from all servers in Q, σ(ζp) ≤ σ(ζ) holds. Therefore, σ(ζ ′) ≤ σ(ζ)
holds.

The Role of Delegates. Every request is processed by all correct servers
in some quorum; the client must be notified once that has occurred. Di-
rect notification by servers in the quorum is not possible because clients do
not know the public keys for COCA servers and, therefore, have no way to
authenticate messages from those servers. So, instead, a COCA server is
employed to detect the completion of request processing and then to notify
the client, as follows.

A delegate for a requestR is a COCA server that causesR to be processed
by correct COCA servers in some quorum and then sends a response (signed
by COCA) back to the initiating client. The processing needed to construct
the response depends on the type of request being processed.

• To process a Query request Q for name cid , the delegate obtains certifi-
cates from a quorum of servers, picks the certificate ζ having the largest
serial number, and uses the threshold signature protocol to produce a
signed response containing ζ:

1. Delegate forwards Q to all COCA servers.

2. Delegate awaits certificates for cid from a quorum of COCA servers.

3. Delegate picks the certificate ζ having the largest serial number
of those received in step 2.

4. Delegate invokes COCA’s threshold signature protocol to sign a
response containing ζ; that response is sent to the client.

• To process an Update request U for name cid , the delegate constructs
the certificate ζ for the given new binding (using the threshold signature
protocol to have COCA digitally sign it) and then sends ζ to all COCA
servers. A server p replaces the certificate ζcid

p for cid that it stores by
ζ if and only if the serial number in ζ is larger than the serial number
in ζcid

p :
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1. Delegate constructs a new certificate ζ for cid , using the threshold
signature protocol to sign the certificate.

2. Delegate sends ζ to every COCA server.

3. Every server, upon receipt, replaces the certificate for cid it had
been storing if the serial number in ζ is larger. The server then
sends an acknowledgment to the delegate.

4. Delegate awaits these acknowledgments from a quorum of COCA
servers.

5. Delegate invokes COCA’s threshold signature protocol to sign a
response; that response is sent to the client.

Quorum Availability ensures that a quorum of servers are always available,
so step 2 in Query and step 4 in Update are guaranteed to terminate. Since
at least t + 1 of COCA’s 3t + 1 servers are correct, compromised servers
cannot prevent a delegate from using (n, t + 1) threshold cryptography in
constructing the COCA signature for a certificate or a response. Thus, step
4 in Query and steps 1 and 5 in Update, which involve contacting all COCA
servers, cannot be disrupted by compromised servers.

A compromised delegate might not follow the protocol just outlined for
processing Query and Update requests. COCA ensures that such behavior
does not disrupt the service by enlisting t + 1 delegates (instead of just one)
for each request. At least one of the t + 1 delegates must be correct, and
this delegate can be expected to follow the Query and Update protocols. So,
we stipulate that a (correct) client making a request to COCA submits that
request to t + 1 COCA servers; each server then serves as a delegate for
processing that request.6

With t + 1 delegates, a client might receive multiple responses to each
request and each request might be processed repeatedly by some COCA
servers. The duplicate responses are not difficult for clients to deal with—a
response is discarded if it is received by a client not waiting for a request
to be processed. That each request might be processed repeatedly by some
COCA servers is not a problem either, because COCA’s Query and Update
implementations are idempotent.

But a compromised client might not follow the protocol and thus might
not submit its request to t + 1 delegates. A problem then occurs if the

6An optimization discussed in Section 5 makes it possible for clients, in normal circum-
stances, to submit requests to only a single delegate.
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delegates receiving a request R execute the first step of Query or Update
processing and then halt. Correct COCA servers now participated in the
processing of R, so (by definition) R is accepted. Yet no (correct) delegate
is responsible for R. Request R is never completed, and Request Completion
is violated.

The defense is straightforward:

• Messages related to the processing of a client request R contain R.

• Whenever a COCA server receives a message related to processing a
client requestR, that server becomes a delegate forR if it is not already
serving as one.

The existence of a correct delegate is now guaranteed for every request that
is accepted.

Self-Verifying Messages. Compromised delegates might also attempt to
produce an incorrect (but correctly signed) response to a client by sending
erroneous messages to COCA servers. For example, in processing a Query
request, a compromised delegate might construct a response containing a
bogus or invalidated certificate and try to get other servers to sign that; in
processing an Update request, a compromised delegate might create a ficti-
tious binding and try to get other servers to sign that; or when processing an
Update request, a compromised delegate might not disseminate the updated
certificate to a quorum (causing the response to a later Query to contain an
invalidated certificate).

COCA’s defense against erroneous messages from compromised servers is
a form of monitoring and detection that we call self-verifying messages.7 A
self-verifying message comprises:

• information the sender intends to convey and

• evidence enabling the receiver to verify—without trusting the sender—
that the information being conveyed by the message is consistent with
some given protocol and also is not a replay.

In COCA, every message a delegate sends on behalf of a request contains
a transcript of relevant messages previously sent and received in processing

7Similar schemes can be found in [50, 11, 2, 24].
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that request (including the original client request). Because messages con-
tained in the transcript are signed by their senders, a compromised delegate
cannot forge the transcript. And, because the members of the quorum par-
ticipating in the protocol are known to all, the receiver of such a self-verifying
message can independently establish whether messages sent by a delegate are
consistent with the protocol and the messages received.8

Communicating using Fair Links. The Fair Links assumption means
that not all messages sent are delivered. To implement reliable communi-
cation in this environment, it suffices for a sender to resend each message
until a signed acknowledgment is received from the intended recipient. In
turn, the recipient returns a signed acknowledgment for every message it re-
ceives (including duplicates, since the previous acknowledgments could have
been lost). If both the sender and the receiver are correct then (due to Fair
Links) this protocol ensures that the receiver eventually receives the message,
the sender eventually receives an acknowledgment from the receiver, and the
sender exits the protocol.

Each protocol in COCA is structured as a series of multicasts, with in-
formation piggybacked on the acknowledgments. A client starts by doing a
multicast to t+1 delegates; the signed response from a single delegate can be
considered the acknowledgment part of that multicast. A delegate then in-
teracts with COCA servers by performing multicasts and awaiting responses
from servers. For the threshold signature protocol, t + 1 correct responses
suffice; for retrieving and for updating certificates, responses from a quorum
of servers are needed. Thus, with at least 2t+1 correct servers, COCA’s mul-
ticasts always terminate due to Quorum Availability since a delegate is now
guaranteed to receive enough acknowledgments at every step and, therefore,
eventually that delegate will stop retransmitting messages.

4 Defense Against Denial Of Service Attacks

A large class of successful denial of service attacks work by exploiting an
imbalance between the resources an attacker must expend to submit a request

8In [40], Gong and Syverson introduce the notion of a fail-stop protocol, which is a
protocol that halts in response to certain attacks. One class of attacks is thus transformed
into another, more benign, class. Our self-verifying messages can be seen as an instance
of this approach, transforming certain Byzantine failures to more-benign failures.
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and the resources the service must expend to satisfy that request, as has been
noted, for example, in [46, 60, 61]. If making a request is cheap but processing
one is not, then attackers have a cost-effective way to disrupt a service—
submit bogus requests to saturate server resources. A service, like COCA,
where request processing involves expensive cryptographic operations and
multiple rounds of communication is especially susceptible to such resource-
clogging attacks.

COCA implements three classic defenses to blunt resource-clogging denial
of service attacks:

(i) An authorization mechanism identifies requests on which resources
should not be expended.

(ii) Requests are grouped into classes, and resources are scheduled in a
manner that prevents demands by one class from affecting requests in
another class.

(iii) The results of expensive cryptographic operations are cached, and at-
tackers cannot destroy the locality that makes this cache effective.

The details for COCA’s realizations of these defenses constitute the bulk of
this section.

Note that our Fair Links and Asynchrony system-model assumptions are
an important defense against denial of service attacks, too. An attacker
stealing network bandwidth or cycles from processors that run COCA servers
is not violating assumptions needed for COCA’s algorithms to work. Such a
“weak assumptions” defense is not without a price, however. Implementing
real-time service guarantees on request processing requires a system model
with stronger assumptions than we are making. Consequently, COCA can
guarantee only that requests it receives are processed eventually. Those who
equate availability with real-time guarantees (e.g., [37, 84, 62, 63]) would not
be satisfied by an eventuality guarantee. But a system whose correctness
depends only on “weak assumptions” is not precluded from satisfying real-
time guarantees when the environment satisfies stronger assumptions, and
COCA does just that.

Finally, COCA employs connectionless protocols for communication with
clients and servers, so COCA is not susceptible to connection-depletion at-
tacks such as the well-known TCP SYN flooding attack [78]. But the proac-
tive secret sharing protocol in the current COCA implementation does use
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SSL (Secure Socket Layer) [32] and is, therefore, subject to certain denial
of service attacks. This vulnerability could be eliminated by restricting the
rate of SSL connection requests, reprogramming the proactive secret sharing
protocol, or adopting the mechanisms described in [46].

4.1 Request-Processing Authorization

Each message received by a COCA server must be signed by the sender. The
server rejects messages that

• do not pass certain sanity checks,

• are not correctly signed, or

• are sent by clients or servers that, from messages received in the past,
were deemed by this server to have been compromised.

An invalid self-verifying message, for example, causes the receiver r to judge
the sender s compromised, and the request-processing authorization mecha-
nism at r thereafter will reject messages signed by s (until instructed other-
wise, perhaps because s has been repaired).

Verifying a signature is considerably cheaper than executing an Update or
Query request (which involve threshold cryptography and multiple rounds of
message exchange). But verifying a signature is not free, and an attacker
might still attempt to flood COCA with requests that are not correctly
signed. Should this vulnerability ever become a concern, we would add a
still-cheaper authorization check that requests must pass before signature
verification is attempted. Cookies [47, 67], hash chains [49], and puzzles [46]
are examples of such checks.

Of course, any server-based mechanism for authorization will consume
some server resources and thus could itself become the target of a resource-
clogging attack, albeit an attack that is more expensive to launch by virtue of
the additional authorization mechanism. An ultimate solution is authoriza-
tion mechanisms that also establish the origin of the request being checked,
since fear of discovery and reprisal is an effective deterrent.

4.2 Resource Management

Because requests are signed, COCA servers are able to identify the client
and/or server associated with each message received. This enables each
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COCA server to limit the impact that any compromised client or server
can have. In particular, each COCA server stores messages it receives in one
of a set of input queues and employs some scheduler to service those queues.
The queues and scheduler limit the fraction of a server’s cycles that can be
co-opted by a given source of requests.9 Others have also advocated similar
approaches [37, 84, 62, 63].

Our COCA prototype has a configurable number of input queues at each
server. A round-robin scheduler services these queues. Client requests are
stored on one or more queues, and messages from each COCA server are
stored on a separate queue associated with that server. Duplicates of an
element already present on a queue are never added to that queue. Each
server queue has sufficient capacity so replays of messages associated with a
request currently being processed cannot cause the queue to overflow (since
that would constitute a denial of service vulnerability).

In a production setting, we would expect to employ a more sophisticated
scheduler and a rich method for partitioning client requests across multiple
queues. Clients might be grouped into classes, with requests from clients in
the same administrative domain stored together on a single queue.

4.3 Caching

Replays of legitimate requests are not rejected by COCA’s authorization
mechanism. Nor should they be, since Fair Links forces clients to resend each
request until enough acknowledgments are received. But attackers now have
an inexpensive way to generate requests that will pass COCA’s authoriza-

9Clearly, this offers no defense against distributed denial of service attacks [76] in
which an attacker, masquerading as many different clients, launches attacks from different
locations. If the clients involved in such an attack can be detected, then their requests
could be isolated using COCA’s queues and scheduler, but solving the difficult problem—
determining which clients are involved in such an attack—is not helped by this COCA
mechanism.

No host-based defense can combat an attack that saturates incoming links. Still, COCA
does enable two forms of what might be termed a distributed defense. First, distributed
denial of service attacks directed at some region of a network (rather than targeting the
COCA service per se) can be tolerated when COCA servers have been deployed so widely
that a significant number reside outside the region under attack. Second, the proactive
recovery protocols in COCA could enable the service to migrate from one set of hosts to
another, which then could allow the service to outrun a distributed denial of service attack
(provided sufficient bandwidth remains available to execute proactive recovery).
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tion mechanism, and COCA must somehow defend against such replay-based
denial of service attacks.

There are actually two ways to redress an imbalance between the cost
of making requests and the cost of satisfying them. One is to increase the
cost of making a request, and that is what the signature checking in COCA’s
authorization mechanism does. A second is to decrease the cost of processing
a request. COCA also embraces this latter alternative. Each COCA server
caches responses to client requests and caches the results of expensive cryp-
tographic operations for requests that are in progress, as also is suggested
in [67, 10]. Servers use these cached responses instead of recalculating them
when processing replays.

The cache for client responses is managed differently than the cache for
in-progress cryptographic results. We first discuss the client-response cache.
With finite-capacity caches, responses to clients cannot be cached indefinitely.
If the server cache is to be effective against replays submitted by clients, we
must minimize the chance of such replays causing cache misses (and con-
comitant costly computation by the server). The solution is to ensure that
client replays are forced to exhibit a temporal locality consistent with the in-
formation being cached. In particular, by caching COCA’s response for each
client’s most recent request,10 by restricting clients to making one request
at a time, and by having clients associate ascending sequence numbers with
their requests, older requests not stored in the cache can be rejected as bogus
by COCA’s authorization mechanism.

Because requests are processed by only a quorum of COCA servers, a
given server’s cache of client responses might not be current. A replay request
signed by client c to some server s can have a sequence number that is larger
than the sequence number for the last response cached at s for c. The larger
sequence-numbered request would not be rejected by s and could not be
satisfied from the cache—the request would have to be processed. But with
quorums comprising 2t+1 of the 3t+1 COCA servers, at most t such replays
can lead to computation by COCA servers. COCA’s implementation further
limits susceptibility to these attacks. Whenever a COCA server sends a
response to a client, that response is also sent to all other COCA servers.
Each server is thus quite likely to have cached the most recent response for

10In a system with a million clients, this client cache would be roughly 5 gigabytes
because approximately 5K bytes is needed to store a client’s last request and COCA’s
response.
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every client request.
An attacker can not only replay client requests for denial of service at-

tacks, but can also replay messages that servers exchange. COCA’s defense
here, too, is a cache. Servers cache results from all expensive operations,
such as computing one-way hashes11 from shares for proactive secret sharing
and computing partial signatures for in-progress requests. The cache at each
server is sufficiently large to handle the maximum number of requests that
all COCA servers could have in-progress at any time. A total of 60K bytes
suffices for a cache to support one client request, when COCA certificates do
not exceed 1024 bytes (which seems reasonable given observed usage).

COCA limits the number of requests that can be in-progress at any time
by having each delegate limit the number of requests it initiates. Of course,
a compromised delegate would not respect such a bound. But recall that
COCA servers are notified when responses are sent, so a server can estimate
the number of concurrent requests that each server (delegate) has in progress.
COCA servers can thus ignore messages from servers that initiate too many
concurrent requests.

5 Performance of COCA

Our COCA prototype is approximately 35K lines of new C source; it employs
threshold and proactive threshold RSA schemes (with 1024-bit RSA keys),
constructed using the protocol described in [85] from building blocks given in
[70].12 We implemented the protocols in OpenSSL [66]. COCA certificates
have the same syntax as X.509 [13] certificates, with a COCA certificate’s
serial number embedded in the X.509 serial number.13

Much of the cost and complexity of COCA’s protocols is concerned with

11The one-way hash function involves expensive modular exponentiation and is needed
to implement verifiable secret sharing [26].

12The protocols [85] we use employ replication of shares and subshares in achieving fault
tolerance rather than the backup scheme used in [70].

13Although syntactically compatible with X.509 certificates, COCA certificates are not
interchangeable with the X.509 certificates in use by public key infrastructures today.
First, COCA imposes an interpretation on the serial numbers embedded in certificates—a
COCA certificate with a higher serial number invalidates one with a lower serial number for
the same client. Second, COCA, because it supports Query, has no need to and therefore
does not provide the CRLs (Certification Revocation Lists) usually associated with public
key infrastructures that support X.509 certificates.
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tolerating failures and defending against attacks, even though failures and
attacks are infrequent today. We normally expect:

N1: Servers will satisfy stronger assumptions about execution speed.

N2: Messages sent will be delivered in a timely way.

Our COCA prototype is optimized for these normal circumstances. Wher-
ever possible, redundant processing is delayed until there is evidence that
assumptions N1 and N2 no longer hold.

In particular, our prototype delays when COCA servers start serving as
the additional delegates for client requests already in progress. This reduces
the number of delegates when N1 and N2 hold, hence it reduces the cost of
request processing in normal circumstances. The refinements to the protocols
of Section 3 are:

• A client sends its request only to a single delegate at first. If this
delegate does not respond within some timeout period, then the client
sends its request to another t delegates, as required by the protocols in
Section 3.

• A server that receives a message in connection with processing some
client request R and that is not already serving as a delegate for R
does not become a delegate until some timeout period has elapsed.

• A delegate p sends a response to all COCA servers, in addition to send-
ing the response to the client initiating the request, after the request
has been processed. After receiving such a response, a server that is
not yet a delegate for this request will not become one in the future; a
server that is serving as a delegate aborts that activity.

A cached response is forwarded to a server q whenever q instructs p
to participate in the processing of a request that has already been
processed. Upon receiving the forwarded response, q immediately ter-
minates serving as a delegate for that request.

Also, the threshold signature protocol COCA uses is designed to give better
performance when N1 and N2 hold.
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COCA Operation Mean (msec) Std dev. (msec)
Query 629 16.7
Update 1109 9.0
PSS 1990 54.6

Table 1: Execution Time in a LAN when N1 and N2 hold.

5.1 Local Area Network Deployment

These experiments involved a COCA prototype comprising four servers (i.e.,
n = 4 and t = 1) communicating using a 100Mbps Ethernet. The servers
were Sun E420R Sparc systems running Solaris 2.6, each with four 450 MHz
processors. The round-trip delay for a UDP packet between any two servers
on this Ethernet is usually under 300 microseconds.

Table 1 gives times for COCA functions executing in isolation when as-
sumptions N1 and N2 hold. We report the delay for Query, for Update, and
for a round of proactive secret sharing.14 The reported sample means and
sample standard deviations are based on 100 executions. All samples were
within 5% of the mean.

To better understand the origin of these delays, we report in Table 2 the
(percentage) contribution that can be attributed to certain CPU-intensive
cryptographic operations. For Query and Update, we measured the time
spent generating partial signatures and signing messages. For proactive se-
cret sharing, we measured the delay associated with the one-way function,
with message signing, and with computation involved in establishing an SSL
(Secure Socket Layer) connection to transmit confidential information be-
tween servers. Notice that improved hardware for performing cryptographic
operations could have a considerable impact. Idle time, because servers some-
times wait for one another, is also listed in Table 2. Only 2% to 6% of the
total execution time is unaccounted. That time is being used for signature
verification, message marshaling and un-marshaling, and task management.

To evaluate the effectiveness of the optimizations outlined above for when
assumptions N1 and N2 hold, Figure 2 compares performance with and with-
out the optimizations. The results summarize 100 executions; very small
sample standard deviations are observed here. The optimizations thus can

14Time spent checking certificates and performing other state recovery at each server is
not included in these delays.
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Query Update PSS
Partial Signature 64% 73%
Message Signing 24% 19% 22%

One-Way Function 51%
SSL 10%
Idle 7% 2% 15%

Other 5% 6% 2%

Table 2: Breakdown of costs for Query, Update, and proactive secret sharing
(PSS) in local area network deployment.

be seen to be effective.

5.2 Internet Deployment

Communications delays in the Internet are higher than in a local area net-
work; the variance of these delays is also higher. To understand the extent,
if any, this affects performance, we deployed four COCA servers as follows.

• University of Troms, Troms, Norway. (300 MHz, Pentium II)

• University of California, San Diego, CA. (266 MHz, Pentium II)

• Cornell University, Ithaca, NY. (550 MHz, Pentium III)

• Dartmouth College, Hanover, NH. (450 MHz, Pentium II)

All ran Linux.15 Figure 3 depicts the average message delivery delay (mea-
sured using ping) between these servers. Delivery delays on the Internet vary
considerably [53] but the values observed during the experiments we report
did not differ significantly from those in Figure 3.

Table 3 gives measurements for the Cornell host in our 4-site Internet
deployment. In comparing Table 1 and Table 3, we see the impact of the
Internet’s longer communication delays (which also lead to longer server idle

15Beggars can’t be choosers. For making measurements, we would have preferred having
the same hardware at every site, though we have no reason to believe that our conclusions
are affected by the modest differences in processor speeds. For a real COCA deployment,
we would recommend having different hardware and different operating systems at each
site so that common-mode vulnerabilities are reduced.
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Figure 2: Effectiveness of optimization in Query, Update, and proactive secret
sharing (PSS) when assumptions N1 and N2 hold.

times). The sample standard deviation is also higher for the Internet deploy-
ment, due to higher load variations on servers and due to the higher variance
of delivery-delays on the Internet; all samples are located within 25% of the
mean. See Table 4 for a breakdown of delays (analogous to Table 2) for our
Internet deployment of COCA.

5.3 COCA Performance and Denial of Service Attacks

Any denial of service attack will ultimately involve some attackers (i.e., some
combination of compromised clients and/or servers) (i) sending new mes-
sages, (ii) replaying old messages, and (iii) delaying message delivery or pro-
cessing. To evaluate how effective COCA’s defenses are against these, we
simulated attacks and measured their impact. The results of those experi-
ments for our local area network deployment of COCA are discussed in this
subsection.
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Figure 3: Deployment of COCA over the Internet with message delays be-
tween servers.

COCA Operation Mean (msec) Std dev. (msec)
Query 2270 340
Update 3710 440
PSS 5200 620

Table 3: Performance of COCA over the Internet. The averages and sample
standard deviations are from 100 repeated executions during a 3-day period.

Message-Creation Defense. New messages sent by servers are not nearly
as potent in denial of service attacks against COCA as new messages sent by
clients. This is because messages from servers are rejected unless they self-
verify. So such messages must contain a correctly signed client request as well
as correctly signed messages from all servers involved in previous protocol
steps—the collusion and compromise of more than t COCA servers is thus
required to get past COCA’s request-processing authorization mechanism.
Moreover, once any message from a given server is found by a COCA server
p to be invalid, subsequent messages from that server will be ignored by
p, considerably blunting their effectiveness in a denial of service attack to
saturate p.
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Query Update PSS
Partial Signature 8.0% 8.7%
Message Signing 3.2% 2.5% 2.6%

One-Way Function 7.8%
SSL 1.6%
Idle 88% 87.7% 87.4%

Other 0.8% 1.1% 0.6%

Table 4: Breakdown of costs for Query, Update, and proactive secret sharing
(PSS) in Internet deployment.

In contrast, a barrage of requests from compromised clients, if correctly
signed, cannot be rejected by COCA’s request-processing authorization mech-
anism (unless the identities of these compromised clients is already known by
the receiver). The impact of such a barrage should be mitigated by COCA’s
resource management mechanism, which ensures that messages from a small
set of senders do not monopolize server resources. How effective as a defense
this mechanism is depends on the exact configuration of COCA’s resource
management mechanism: the number of input queues, on which input queues
various clients are grouped, and the scheduler used in servicing these input
queues.

To measure this effectiveness, it suffices to investigate the simple case of
two clients. A compromised client sends a barrage of new requests to the
service at rates we control;16 a correct client sends a request and then awaits
a response or a timeout17. Of interest is by how much the correct client’s
requests become delayed due to requests the compromised client sends, since
this information can then be used in predicting COCA’s behavior when there
are more than two clients.

Once a client’s request R is appended to some input queue on a (correct)
COCA server, two factors contribute to delay processing R. The first source
of delay arises from multiplexing the server as it processes a number of re-
quests. This number of requests is referred to as the level of concurrency.
Assuming a modest load from correct clients, the delay due to sharing the

16Because the compromised client does not await responses before sending additional re-
quests, these experimental results apply directly to the case where a group of compromised
clients all share the same input queue on each server.

17The timeout is 1 second for Query and 2 seconds for Update.
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processor with other, concurrent requests is not affected by actions an at-
tacker might take and thus is not of interest here; our experiments therefore
assume servers process requests to completion serially (viz. the level of con-
currency is 1). The second source of delay is affected by the compromised
client’s barrage of new messages—requests in input queues whose processing
will precede R. A mechanism to defend against a barrage of client requests
must control this source of delay, and it is this delay that we measure.

Our first experiment adjusted the rate of requests from the compromised
client while measuring the performance of requests from the correct client.
To start, each server was configured to store all client requests on a single
input queue. The capacity of this queue was 10 requests. We found that
the correct client would get no service whenever the compromised client sent
requests at a rate in excess of 10 requests per second. At 10 requests per
second, requests from the compromised client fill the (fixed capacity) input
queue virtually all the time—a Query request from the correct client has a
9 in 10 chance of being discarded because it arrives when there is no room
in the input queue, and an Update request has half that (due to the 1 and 2
seconds timeout respectively). Needless to say, the denial of service attack is
a success.

For the next experiment, each server was configured to have separate
queues for the correct client and the compromised client. A round-robin
scheduler serviced the two queues. Figures 4 and 5 show performance of Query
and Update requests from the correct client for various rates of requests from
the compromised client. Every reported data point is the average processing
time over 100 experiments; the error bars depict the range for 95% of the
samples.

The curves for Query and Update in Figures 4 and 5 comprise two seg-
ments. In the first segment, increases in the rate of requests that the com-
promised client sends cause increased delays for requests from the correct
client. This is because as the rate of requests from the compromised client
increases, so does the probability that COCA—with its round-robin servicing
of input queues—will have to process one of those requests R before process-
ing a request from the correct client. The processing of R thus increases
the processing time for a request from the correct client. We see in this first
segment almost identical wide ranges of samples for each rate measured. The
worst case occurs when the request from the correct server arrives just after
a request from the compromised client starts to get processed, while the best
case occurs when the request from the correct server arrives when no request
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Figure 4: Performance of Query for a correct client when a compromised
client makes requests at varying rates.

from the compromised client is being processed. Even though we see the same
worst and best case, the means of samples increases as the rate of requests
from the compromised client increases, reflecting an increasing probability
that the request from the correct client has to wait for the processing of a
request from the compromised client.

The second segment of the curves begins once the compromised client is
sending requests at approximately the same rate as the normal client (i.e.,
approximately 1 request per second for Query and 0.5 requests per second for
Update). Throughout this second segment, further increases in the request
rate from the compromised client do not further degrade the processing of
requests from the correct client. This is because requests from the two clients
are being processed in alternation, and the delay for requests from the correct
client remains at about double what is measured when there is no compro-
mised client. Note that, as the rate of requests from the compromised client
increases, more and more of those requests are discarded by servers—the
fixed-capacity input queue for the compromised client is full when those re-
quests arrive.
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Figure 5: Performance of Update for a correct client when a compromised
client makes requests at varying rates.

COCA’s request-processing authorization mechanism starts saturating at
100 requests per second, due to the time required for a server to perform
signature verification on each incoming message. With 100 requests per
second, a server has diminished processing capacity to execute protocols for
Query and Update. There was thus little point in exploring higher request
rates in performance experiments, and we didn’t.

In an actual deployment, clients will be partitioned over a set of input
queues. But the worst-case performance for this case is easy to bound in light
of the above experiments for two clients. Suppose b queues are serving only
compromised clients, c queues are serving only correct clients, and d queues
are serving both kinds of clients. Requests from compromised clients will
starve requests from correct clients that share the same input queue, because
the first experiment above established that if the rate of requests to a single
input queue from compromised clients exceeds 10 requests per second then
requests from correct clients to that input queue are unlikely to succeed.
And the second experiment established that COCA’s resource-management
mechanisms will guarantee that c/(b+ c+ d) of each server’s processing time
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and other resources are devoted to processing requests on the queues that
serve only correct clients.

Message-Replay Defense. COCA employs caching to defend against de-
nial of service attacks involving message replays. We need not consider re-
plays of client requests in our experiments, because their impact is consider-
ably smaller than the impact of processing new requests from a compromised
client. Specifically, for new requests, COCA must expend resources in exe-
cuting the protocol for the operation being requested, but for replays of client
requests, processing (by design) involves considerably fewer resources—the
request is one that can be rejected because its sequence number is too small,
one that can be be satisfied from the server’s cache, or one that can be ignored
because it is already being processed. Assuming that the requests being re-
played are from the same (compromised) client that launches the denial of
service attacks in the experiments of Figures 4 and 5, those curves give the
bounds we seek on the worst-case performance of COCA when client-request
replays form the basis for a denial of service attack.

Replays of messages from servers in COCA are not immobilizing, because
relatively expensive cryptographic computations are cached. To validate this,
we simulated an attacker replaying server messages at varying rates to all
other COCA servers. The message being replayed was designed to cause a
defenses-disabled COCA server to compute partial signatures, which takes
approximately 200 milliseconds on a 450 MHz Sun E420 Sparc server—a
relatively expensive operation and thus particularly effective in a denial of
service attack.

We measured the average delay for Query, Update, and proactive secret
sharing as a function of the rate of message replay sent by the compromised
server. We compared the performance in the case where caching is enabled
to that in the case where caching is disabled. This information appears in
Figures 6 through 8.

For the case where caching is enabled, the average delay for each oper-
ation is largely unaffected as the rate of message replay increases, because
caches satisfy most of the computational needs in handling those messages.
We witnessed a slight increase in the average delay when the rate of mes-
sage replay reaches 100 messages per second. This is the point where the
request-processing authorization mechanism becomes saturated by incoming
messages.
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Figure 6: Performance of Query processing under the simulated denial of
service attack from a compromised server: with cache vs. without cache.

For the case where caching is disabled, each curve consists of two seg-
ments. The first segment (which ends at approximately 3 replays per second
for Query and Update, and 10 replays per second for PSS) resembles the first
segment in the curves of Figures 4 and 5, and it reflects the increased use of
processing resources by replays to recompute values that were not cached as
the replay rate increases. The second segment only gradually increases. Over
this range, additional computation is not required (so additional delay is not
incurred) since the resource management mechanism bounds the number of
attacker messages that are processed.

Even without the compromised server launching the attack (i.e., when
the rate of replay messages is 0), the average delay for each operation in the
case where caching is enabled is lower than that in the case where caching is
disabled. This is because, with one fewer server participating, repeated exe-
cutions of certain expensive operations is necessary since assumption N1 no
longer holds, so correct servers are unable to finish processing in an optimized
execution. The switch back to the fault-tolerant version causes repeated exe-
cutions of certain expensive cryptographic operations, which can be avoided
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Figure 7: Performance of Update processing under the simulated denial of
service attack from a compromised server: with cache vs. without cache.

when caching is enabled.

Delivery-Delay Defense. To measure the impact of message transmission
and processing delays on the performance of COCA, we instrumented each
server so that messages delivered to a client or server could be delayed a
specified amount before becoming available for receipt. We investigated both
the case where messages sent to one specific server are delayed and the case
where messages sent to all servers are delayed.

Figure 9 gives the average time and the interval containing 95% of the
samples for COCA to process three operations of interest—Query, Update,
and a round of proactive secret sharing—when messages from a single server
are delayed. The case where this server is unavailable is also noted as inf on
the abscissa.

As delay increases, the processing time is seen to move through three
phases. During the first phase, as server p (say) increases its delay in pro-
cessing messages, so does the delay for the operation of interest. This occurs
because COCA protocols initially assume N1 and N2 hold, and the optimized
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Figure 8: Performance of proactive secret sharing under the simulated denial
of service attack from a compromised server: with cache vs. without cache.

protocols require participation by p. A delay in messages from p thus slows
the protocols.

The second phase is entered after the delay for p causes servers to suspect
that assumptions N1 and N2 do not hold. These servers initiate redundant
processing, creating additional delegates for in-process operations, for exam-
ple. Participation by p is no longer required for the operation to terminate;
increasing the delay at p does not delay completion of the operation. But
p will continue to send messages requiring servers to compute replies. The
time that servers devote to generating these replies decreases as the delay
for p increases, simply because p sends fewer such messages when the delay
is greater. Servers thus have more cycles to devote to generating replies for
servers other than p; these are the replies needed in order for the protocols to
terminate. So, the increasing delay for p frees server resources to speed the
termination of the protocol, and average processing time decreases in this
second phase.18

18We see that the decrease in processing time is more significant in the case of proactive
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Figure 9: Performance of COCA vs. message delay for one server. Message
delay of inf indicates the case where this one server is unavailable.

The third phase—a plateau in response time—is reached when the delay
for p is sufficiently high so that it imposes little load on other servers.

Figure 10 gives average measured delay and the interval containing 95%
of the samples when message delay increases at all servers. Observe that the
execution time increases linearly with the increase of message delay. The
curves are consistent with how the protocols operate: processing a Query
involves 6 message delays, processing an Update involves 8 message delays,
and a round of proactive secret sharing involves 6 message delays.

secret sharing than in the cases of Query and Update. In the case of proactive secret sharing,
processing messages from server p involves some new (therefore not cached) expensive
cryptographic operations, while, in the other two cases, expensive cryptographic operations
can be avoided due to caching.
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Figure 10: Performance of COCA vs. message delay for all servers.

6 Related Work

Systems. A fault-tolerant authentication substrate [73] for supporting se-
cure groups in the Horus system appears to be the first use of threshold
cryptography along with replication for implementing a CA. That led to the
design and implementation of Ω [74], a stand-alone general-purpose CA hav-
ing more ambitious functionality, performance, and robustness goals. Unlike
COCA, none of this early work was intended to resist denial of service at-
tacks or mobile adversaries. On the other hand, Ω does provide clients with
key escrow operations, something that COCA does not currently support.19

Ω was built using middleware (called Rampart [71, 72]) that implements
process groups in an asynchronous distributed system where compromised
processors can exhibit arbitrary behavior. Rampart manages groups of repli-
cas and removes non-responsive members from process groups to ensure the
system does not stall due to compromised replicas. However, it is impos-
sible to distinguish between slow and halted processors in an asynchronous

19The same threshold decryption and blinding [16, 17, 18] that Ω uses for supporting
this additional functionality would allow COCA to support these features too.
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system, so Rampart uses timeouts for identifying processors that might be
compromised. A correct but slow server might thus be removed from a pro-
cess group, and this constitutes a denial of service vulnerability. In addition,
because making group membership changes involves expensive protocols, an
adversary can launch denial of service attacks against Rampart by insti-
gating membership changes. Furthermore, neither Rampart nor Ω employs
proactive recovery, so these systems are vulnerable to mobile adversaries.

An approach related to Rampart is embodied in the Byzantine Fault Tol-
erance work (BFT) discussed in [11]. BFT employs an ordering mechanism
that not only defines a total ordering on requests but also enables a server
to know, given some request R received for processing, whether processing
R should be delayed because some request whose ordering precedes R ex-
ists. But like COCA, BFT is unable to guarantee that requests are processed
in an order consistent with Lamport’s causality relation—that would require
trusting all clients. BFT’s stronger ordering mechanism is not needed for im-
plementing COCA’s Query and Update; it would be needed if the specification
of Update were changed so that a copy of the certificate being updated were
no longer passed as an argument. BFT is extremely fast because, wherever
possible, it uses MACs (message authentication codes) instead of public key
cryptography. Employing MACs would also boost COCA’s performance, al-
though public key cryptographic operations are needed by COCA for signing
certificates and responses to clients.

As with COCA, BFT employs proactive recovery [12]. Even though BFT
replicas do not store shares of a service private key, these replicas do refresh
shared secret keys to combat mobile adversaries. BFT takes denial of ser-
vice attacks into account and employs defenses similar to the mechanisms
discussed for COCA in Section 4 [10].

An approach to implementing secure and fault-tolerant services based on
replication in asynchronous systems with potentially malicious adversaries
has also been proposed in [7], and this seems to be a basis for the Hydra asyn-
chronous group communication primitives [8]. State machine replication [54]
is intended here, with randomized Byzantine agreement to circumvent the
impossibility result concerning agreement in asynchronous systems [27]. The
Hydra work does not, at present, address mobile adversary or denial of service
attacks; COCA’s solutions would apply.

The PASIS (Perpetually Available and Secure Information Systems) ar-
chitecture [82] is intended to support a variety of approaches—decentralized
storage system technologies, data redundancy and encoding, and dynamic
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self-maintenance—that have been used in constructing survivable informa-
tion storage systems. Once PASIS has been implemented, it should be possi-
ble to use it and program COCA’s Query and Update in any number of ways.
What is not clear is whether PASIS will support COCA’s optimizations or
defense against denial of service attacks, since doing so would depend on PA-
SIS selecting a weak model of computation and supporting access to low-level
details of the PASIS building-block protocols.

Replication and secret sharing are the basis for a fault-tolerant and se-
cure key distribution center (KDC) described in [39]. In this design, each
client/KDC-server pair shares a separate secret key. The KDC allows two
clients to establish their own shared secret key, and does so using protocols
in which no single KDC-server ever knows that shared secret key. In fact, an
attack must compromise a significant fraction of the KDC’s servers before
any keys the KDC establishes to link clients would be revealed.

Also related to COCA are various distributed systems that implement
data repositories with operations analogous to Query and Update. Pha-
lanx [57] is particularly relevant, because it is intended for a setting quite
similar to COCA’s (viz. asynchronous systems in which compromised servers
exhibit arbitrary behavior) and can be used to implement shared variables
having similar semantics to COCA’s certificates. (COCA’s certificates can
be regarded as shared variables that are being queried and updated.)

Phalanx supports two different implementations of read (Query) and write
(Update) for shared variables. One implementation is optimized for hon-
est writers, clients that follow specified protocols or exhibit benign failures
(crash, omission, or timing failures); a second implementation tolerates dis-
honest writers, clients that can exhibit arbitrary behavior when faulty. Pha-
lanx employs a masking Byzantine quorum system [56] for dishonest writers
and employs a dissemination quorum system for honest writers.20

In Phalanx’s honest writer protocol, writers must be trusted to sign
the objects being stored. Although, as with this honest writer protocol,
COCA also uses a dissemination quorum system, COCA’s protocols do not
require clients to be trusted—COCA servers store objects (certificates) that
are signed by COCA’s service key, and that prevents compromised COCA

20In a masking Byzantine quorum system, Quorum Intersection is strengthened to stip-
ulate that the intersection of any two quorums always contains more correct replicas than
compromised replicas. A masking Byzantine quorum system can tolerate compromise of
as many as one quarter of its servers. Recall, a dissemination quorum system tolerates
one third compromised servers.
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servers from undetectably corrupting objects they store. Another point of
difference between COCA and Phalanx is the manner in which clients verify
responses from the service. In Phalanx, every client must know the public
key of every server, whereas in COCA each client need know only the single
public key for the service.

The e-vault data repository [44, 33] at IBM T.J. Watson Research Cen-
ter implements Rabin’s information dispersal algorithm [69] for storing and
retrieving files. Information is stored in e-vault with optimal space efficiency.
But the e-vault protocols assume a synchronous model of computation and,
thus, involve stronger assumptions about execution timing and delivery de-
lays than we make for COCA. An attacker that is able to overload processors
or clog the network can invalidate these assumptions and cause the e-vault
protocols to fail. Like with COCA, clients of e-vault communicate with the
system through a single server (there called a gateway).

Cryptographic Building Blocks and Public Key Infrastructure. COCA
employs threshold cryptography [22, 23, 20, 21, 31] and proactive secret shar-
ing [45, 43, 42, 30, 29] as building blocks. Because existing protocols were not
intended for systems in which (only) our Fair Links and Asynchrony assump-
tions hold, it was necessary to design new protocols for COCA [86, 85]. Imple-
mentations of threshold cryptography and proactive secret sharing schemes
for stronger system models are reported in [3, 81, 25, 15].

Most previous work on public key infrastructure (e.g., [34, 80, 55, 48]) ad-
vocates off-line CAs, which issue certificates and certificate revocation lists
(CRLs). Trade-offs associated with CRLs and related mechanisms are dis-
cussed in [77, 64, 51, 28, 59]. Stubblebine [79] compares different mechanisms
to deal with revoked certificates and argues that a single on-line service is
impractical for both performance and security reasons, advocating a solution
with an off-line identification authority and an on-line revocation authority.
COCA could be used to implement the on-line part of such a solution.

In [6], a security infrastructure consisting of a distributed CA and a cer-
tificate revocation notification service is discussed, although the implementa-
tion does not yet appear to be complete. As with COCA, the distributed CA
employs threshold cryptography. However, the proposed CA does not sup-
port Query or Update, instead promptly notifying clients about invalidated
certificates.

Alternatives to using an off-line CA include on-line certificate status
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checking (OCSP) [65, 64, 51] and on-demand revocation lists [59]. The DVCS
data validation and certification server [1] extends OCSP for checking arbi-
trary digitally signed documents. All of these services rely on some sort of
trusted on-line service (a responder, a validation authority, and so on), so
our experience implementing and deploying COCA is directly applicable.

Some believe that scalability in a global public key infrastructure would
dictate deploying a hierarchy of certification authorities. Previous work (e.g.,
[58, 75, 5]) has applied the notion of “web of trust”, first adopted in PGP [87],
and exploited independent hosts or paths to establish trust in such an in-
frastructure. Services like those provided by COCA might still be desired in
such an infrastructure, since that would allow clients to verify, on demand,
certificate validity.

7 Concluding Remarks

Off-line operation of a CA—an air gap—is clearly an effective defense against
network-borne attacks. For that reason, the traditional wisdom has been to
keep a CA off-line as much as possible. This approach, however, trades one
set of vulnerabilities for another. A CA that is off-line cannot be attacked
using the network but it also cannot update or validate certificates on de-
mand. Vulnerability to network-borne attacks is decreased at the expense
of increased client vulnerability to attacks that exploit recently invalidated
certificates.

By staying on-line, COCA makes the trade-off between vulnerabilities
differently. COCA’s vulnerability to network-borne attacks is greater, but
its clients’ vulnerability to attacks based on invalidated certificates is re-
duced. Marrying COCA with an off-line CA would achieve the advantages
of both [55, 79, 65]. The off-line CA issues certificates for clients, and COCA
validates (on demand) these certificates. Revocation of a certificate is thus
achieved by notifying COCA; issuance of a new certificate requires interact-
ing with the off-line CA. But we are now trading performance for security.
In particular, while it becomes harder for an adversary to create a new, valid
certificate (because that requires compromising the offline CA), it also now
takes longer for a client to have a new certificate issued (because that requires
interacting with the offline CA).
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Looking to the Future

The development of COCA has led to more than a prototype on-line CA,
more than specific protocols and denial of service defenses, and more than
a set of experimental data documenting the performance of a system under
certain attacks. In composing mechanisms for fault-tolerance and security,
COCA implements a secure multi-party computation [83, 38, 4, 19]. Just as
agreement protocols and their kin have become part of the vocabulary of sys-
tem builders concerned with fault-tolerance, so too must protocols for secure
multi-party computation if we aspire to build trustworthy systems. Query
and Update have relatively simple semantics. For building richer services
that are fault-tolerant and secure, we must become facile with implementing
richer forms of secure multi-party computation—protocols that enable n mu-
tually distrusted parties to compute a publicly known function on a secret
input they share without disclosing the input or what input shares are held
by the parties.

If one lesson from COCA is a call to investigate practical, secure, multi-
party computation, a second is the value of weak assumptions—rather than
specific mechanisms—for a principled approach to defending against attacks.
Defenses based on weak assumptions are, by construction, accompanied by
a characterization of vulnerabilities—the assumptions themselves. And, by
their very nature, weak assumptions are difficult to violate. So, for example,
careful attention paid to the assumptions that characterize COCA’s environ-
ment led to a system with inherent defenses to denial of service attacks. New
assumptions, however, invariably require the development of new protocols
and perhaps also involve new kinds of guarantees which we must then learn
to build on.
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A Detailed Description of Protocols

This appendix gives details for the protocols described in Section 3.21 We describe
the protocol initiated by a delegate p. In practice, more than one delegate could
initiate the protocol for the same given request because a server p starts acting as
a delegate when p first receives the request or when p receives any message related
to the processing of the request. The optimizations outlined in Sections 4 and 5
are not included in this presentation.

The following notational conventions are used throughout the appendix:

• p, q: COCA servers

• c: COCA client

• 〈m〉k: message m signed by COCA using its service private key k

• 〈m〉p: message m signed by a server p using p’s private key

• 〈m〉c: message m signed by a client c using c’s private key

• PS (m, sp): a partial signature for a message m generated by a server p using
p’s share sp

• [h1 −→ h2 : m]: message m is sent from host (a server or a client) h1 to
host h2

• [∀q. p −→ q : mq]: message mq is sent from server p to server q for every
COCA server q

Each message includes a type identifier to indicate the purpose of the message.
These type identifiers are presented in the sans serif font.

A.1 Client Protocol

Every client request has the form:

〈type, c, seq , parm, cred〉c

where type indicates the type of the request, c is the client issuing the request, seq
is a unique sequence number for the request, parm contains parameters related to
the request, and cred is credentials that authorize the request.

Clients use the following protocol to communicate with COCA.
21See [86] for a description of the proactive secret sharing protocol used by COCA.
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1. To invoke Query for the certificate associated with name cid , client c com-
poses a request:

R = 〈query, c, seq , cid , cred〉c
To invoke Update to establish a new binding of key with name cid based on
a given certificate ζ ′ for cid , client c composes a request:

R = 〈update, c, seq , ζ ′, 〈cid , key〉, cred〉c

2. Client c sends R to t+1 servers. It periodically re-sends R until it receives a
response to its request. For a Query, the response will have the form 〈R, ζ〉k,
where ζ is a certificate for cid . For an Update, the response will have the
form 〈R, done〉k.

A.2 Threshold Signature Protocol

The following describes threshold signature protocol22 threshold sign(m, E), where
m is the message to be signed and E is the evidence used in self-verifying messages
to convince receivers to generate partial signatures for m. As detailed in Appen-
dices A.3 and A.4, different evidence is used in the protocols for Query and Update.

1. Server p sends to each server q a sign request message with message m to be
signed and evidence E .

[∀q. p −→ q : 〈sign request, p,m, E〉p] (i)

2. Each server q, upon receiving a sign request message (i), verifies evidence E
with respect to m. If E is valid, then q generates a partial signature using
its share sq and sends the partial signature back to p.

[q −→ p : 〈sign response, q, p, m,PS (m, sq)〉q]

22While this protocol is appropriate for schemes such as threshold RSA, the protocol
might not be applicable to other threshold signature schemes, such as those based on
discrete logarithms (e.g., [14, 41]). Those schemes may require an agreed-upon random
number in generating partial signatures. Such schemes can be implemented by adding a
new first step, in which a delegate decides a random number based on suggestions from
t + 1 servers (to ensure randomness) and notifies others of this random number, before
servers can generate partial signatures.
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3. Server p periodically repeats step 1 until it receives partial signatures from a
quorum of servers23 (which includes a partial signature from p itself). Server
p then selects t + 1 partial signatures to construct signature 〈m〉k. If the
resulting signature is invalid (which would happen if compromised servers
submit erroneous partial signatures), then p tries another combination of
t + 1 signatures.24 This process continues until the correct signature 〈m〉k
is obtained.

A.3 Query processing protocol

1. Upon receiving a request R = 〈query, c, seq , cid , cred〉c from a client c, server
p first checks whether R is valid based on the credentials cred provided. If
R is valid then p sends a query request message to all servers:

[∀q. p −→ q : 〈query request, p,R〉p] (ii)

2. Each server q, upon receiving a query request message (ii), checks the validity
of the request. If the request is valid, then q fetches the current signed local
certificate associated with name cid : ζq = 〈cid , σ(ζq), keyq〉k. Server q then
sends back to p the following message:

[q −→ p : 〈query response, q, p,R, ζq〉q]

3. Server p repeats step 1 until it receives query response messages from a quo-
rum of servers (including p itself). p verifies that the certificates in these
messages are correctly signed by COCA. Let ζ = 〈cid , σ, key〉k be the certifi-
cate with the largest serial number in these query response messages. Server
p invokes threshold sign(m, E), where m is (R, ζ) and E is the query response
messages collected from a quorum of servers, thereby obtaining 〈R, ζ〉k.

4. Server p sends the following response to client c:25

[p −→ c : 〈R, ζ〉k].
23In fact, p can try to construct the signature as soon as it has received t + 1 partial

signatures. p has to wait for more partial signatures only if some partial signatures it
received are incorrect.

24In the worst case, p must try
(
2t+1
t+1

)
combinations. The cost is insignificant when t is

small. There are robust threshold cryptography schemes [36, 35] that can reduce the cost
by using error correction codes.

25To implement the optimization described in Section 5, p also forwards the response
to all other servers. Henceforth, these servers do not need to act as a delegate for this
request any more. The same is true for the last step of Update request processing.
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A.4 Update processing protocol

1. Upon receiving a request R = 〈update, c, seq , ζ ′, 〈cid , key〉, cred〉c from a
client c, server p first checks whether R is valid, based on the credentials cred
provided. If R is valid then p computes serial number σ(ζ) = (v + 1, h(R))
for new certificate ζ, where v is the version number of ζ ′ and h is a public
collision-free hash function. Then, p invokes threshold sign(m, E), where m
is 〈cid , σ(ζ), key〉 and E is R, thereby obtaining ζ = 〈cid , σ(ζ), key〉k.

2. Server p then sends an update request message to every server q.

[∀q. p −→ q : 〈update request, p,R, ζ〉p] (iii)

3. Each server q, upon receiving an update request message (iii), updates its
certificate for cid with ζ if and only if σ(ζq) < σ(ζ), where ζq is the certificate
for cid stored by the server. Server q then sends back to p the following
message:

[q −→ p : 〈update response, q, p,R, done〉q]

4. Server p repeats step 2 until it receives the update response messages from a
quorum of servers. p then invokes threshold sign(m, E), where m is (R, done)
and E is the update response messages collected from a quorum of servers,
thereby obtaining 〈R, done〉k.

5. Server p sends the following response to client c:

[p −→ c : 〈R, done〉k]
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